Comptes Rendus
Linear statistics for zeros of Riemann's zeta function
[Statisiques linéaires pour les zéros de la fonction zêta de Riemann]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 667-670.

Nous considérons une fonction de comptage lisse des zéros de la fonction zêta de Riemann, normalisés au voisinage de la hauteur T. Nous montrons que les premiers moments sont Gaussiens, le nombre exact de tels moments dépendant de la moyenne choisie et de la fonction de comptage des zéros.

We consider a smooth counting function of the scaled zeros of the Riemann zeta function, around height T. We show that the first few moments tend to the Gaussian moments, with the exact number depending on the statistic considered.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02541-4

Chris Hughes 1 ; Zeév Rudnick 1

1 Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
@article{CRMATH_2002__335_8_667_0,
     author = {Chris Hughes and Ze\'ev Rudnick},
     title = {Linear statistics for zeros of {Riemann's} zeta function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {667--670},
     publisher = {Elsevier},
     volume = {335},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02541-4},
     language = {en},
}
TY  - JOUR
AU  - Chris Hughes
AU  - Zeév Rudnick
TI  - Linear statistics for zeros of Riemann's zeta function
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 667
EP  - 670
VL  - 335
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02541-4
LA  - en
ID  - CRMATH_2002__335_8_667_0
ER  - 
%0 Journal Article
%A Chris Hughes
%A Zeév Rudnick
%T Linear statistics for zeros of Riemann's zeta function
%J Comptes Rendus. Mathématique
%D 2002
%P 667-670
%V 335
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02541-4
%G en
%F CRMATH_2002__335_8_667_0
Chris Hughes; Zeév Rudnick. Linear statistics for zeros of Riemann's zeta function. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 667-670. doi : 10.1016/S1631-073X(02)02541-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02541-4/

[1] A. Fujii Explicit formulas and oscillations (D.A. Hejhal; J. Friedman; M.C. Gutzwiller; A.M. Odlyzko, eds.), Emerging Applications of Number Theory, Springer, 1999, pp. 219-267

[2] C.P. Hughes; Z. Rudnick Linear statistics of low-lying zeros of L-functions, 2002 | arXiv

[3] A. Selberg Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid., Volume 48 (1946) no. 5, pp. 89-155

  • Alessandro Fazzari A weighted one-level density of families of L-functions, Algebra Number Theory, Volume 18 (2024) no. 1, p. 87 | DOI:10.2140/ant.2024.18.87
  • Sandro Bettin; Alessandro Fazzari A weighted one-level density of the non-trivial zeros of the Riemann zeta-function, Mathematische Zeitschrift, Volume 307 (2024) no. 2 | DOI:10.1007/s00209-024-03496-7
  • Brad Rodgers Arithmetic Consequences of the GUE Conjecture for Zeta Zeros, Michigan Mathematical Journal, Volume 74 (2024) no. 5 | DOI:10.1307/mmj/20216139
  • Dmitry Ostrovsky On Riemann zeroes, lognormal multiplicative chaos, and Selberg integral, Nonlinearity, Volume 29 (2016) no. 2, p. 426 | DOI:10.1088/0951-7715/29/2/426
  • Kenneth Maples; Brad Rodgers Bootstrapped zero density estimates and a central limit theorem for the zeros of the zeta function, International Journal of Number Theory, Volume 11 (2015) no. 07, p. 2087 | DOI:10.1142/s1793042115500918
  • Paul Bourgade; Jeffrey Kuan Strong Szegő Asymptotics and Zeros of the Zeta‐Function, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 6, p. 1028 | DOI:10.1002/cpa.21475
  • BRAD RODGERS A CENTRAL LIMIT THEOREM FOR THE ZEROES OF THE ZETA FUNCTION, International Journal of Number Theory, Volume 10 (2014) no. 02, p. 483 | DOI:10.1142/s1793042113501054
  • Vladislav Kargin Statistical properties of zeta functions’ zeros, Probability Surveys, Volume 11 (2014) no. none | DOI:10.1214/13-ps214
  • E Dueñez; D K Huynh; J P Keating; S J Miller; N C Snaith A random matrix model for elliptic curveL-functions of finite conductor, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 11, p. 115207 | DOI:10.1088/1751-8113/45/11/115207

Cité par 9 documents. Sources : Crossref

Commentaires - Politique