[Statisiques linéaires pour les zéros de la fonction zêta de Riemann]
Nous considérons une fonction de comptage lisse des zéros de la fonction zêta de Riemann, normalisés au voisinage de la hauteur T. Nous montrons que les premiers moments sont Gaussiens, le nombre exact de tels moments dépendant de la moyenne choisie et de la fonction de comptage des zéros.
We consider a smooth counting function of the scaled zeros of the Riemann zeta function, around height T. We show that the first few moments tend to the Gaussian moments, with the exact number depending on the statistic considered.
Accepté le :
Publié le :
Chris Hughes 1 ; Zeév Rudnick 1
@article{CRMATH_2002__335_8_667_0, author = {Chris Hughes and Ze\'ev Rudnick}, title = {Linear statistics for zeros of {Riemann's} zeta function}, journal = {Comptes Rendus. Math\'ematique}, pages = {667--670}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02541-4}, language = {en}, }
Chris Hughes; Zeév Rudnick. Linear statistics for zeros of Riemann's zeta function. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 667-670. doi : 10.1016/S1631-073X(02)02541-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02541-4/
[1] Explicit formulas and oscillations (D.A. Hejhal; J. Friedman; M.C. Gutzwiller; A.M. Odlyzko, eds.), Emerging Applications of Number Theory, Springer, 1999, pp. 219-267
[2] Linear statistics of low-lying zeros of L-functions, 2002 | arXiv
[3] Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid., Volume 48 (1946) no. 5, pp. 89-155
- A weighted one-level density of families of L-functions, Algebra Number Theory, Volume 18 (2024) no. 1, p. 87 | DOI:10.2140/ant.2024.18.87
- A weighted one-level density of the non-trivial zeros of the Riemann zeta-function, Mathematische Zeitschrift, Volume 307 (2024) no. 2 | DOI:10.1007/s00209-024-03496-7
- Arithmetic Consequences of the GUE Conjecture for Zeta Zeros, Michigan Mathematical Journal, Volume 74 (2024) no. 5 | DOI:10.1307/mmj/20216139
- On Riemann zeroes, lognormal multiplicative chaos, and Selberg integral, Nonlinearity, Volume 29 (2016) no. 2, p. 426 | DOI:10.1088/0951-7715/29/2/426
- Bootstrapped zero density estimates and a central limit theorem for the zeros of the zeta function, International Journal of Number Theory, Volume 11 (2015) no. 07, p. 2087 | DOI:10.1142/s1793042115500918
- Strong Szegő Asymptotics and Zeros of the Zeta‐Function, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 6, p. 1028 | DOI:10.1002/cpa.21475
- A CENTRAL LIMIT THEOREM FOR THE ZEROES OF THE ZETA FUNCTION, International Journal of Number Theory, Volume 10 (2014) no. 02, p. 483 | DOI:10.1142/s1793042113501054
- Statistical properties of zeta functions’ zeros, Probability Surveys, Volume 11 (2014) no. none | DOI:10.1214/13-ps214
- A random matrix model for elliptic curveL-functions of finite conductor, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 11, p. 115207 | DOI:10.1088/1751-8113/45/11/115207
Cité par 9 documents. Sources : Crossref
Commentaires - Politique