[Ondes d'eau avec tourbillons]
Pour le problème classique des ondes d'eau sans viscosité sous l'influence de la gravité, décrit par l'équation d'Euler avec une surface libre à fond plat, nous construisons des houles aux tourbillons. Ce sont des ondes symmétriques dont les profils sont monotones entre chaque sommet et creux. Nous employons la théorie de la bifurcation globale pour construire un ensemble connexe de telles solutions. Cet ensemble contient des ondes au profil non-oscillatoire et aussi des ondes qui approchent des flots avec des points de stagnation.
For the classical inviscid water wave problem under the influence of gravity, described by the Euler equation with a free surface over a flat bottom, we construct periodic traveling waves with vorticity. They are symmetric waves whose profiles are monotone between each crest and trough. We use global bifurcation theory to construct a connected set of such solutions. This set contains flat waves as well as waves that approach flows with stagnation points.
Accepté le :
Publié le :
Adrian Constantin 1 ; Walter Strauss 2
@article{CRMATH_2002__335_10_797_0, author = {Adrian Constantin and Walter Strauss}, title = {Exact periodic traveling water waves with vorticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {797--800}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02565-7}, language = {en}, }
Adrian Constantin; Walter Strauss. Exact periodic traveling water waves with vorticity. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 797-800. doi : 10.1016/S1631-073X(02)02565-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02565-7/
[1] On the Stokes conjecture for the wave of extreme form, Acta Mathematica, Volume 148 (1982), pp. 193-214
[2] The rotational flow of finite amplitude periodic water waves on shear currents, Applied Ocean Research, Volume 20 (1998), pp. 163-171
[3] On the deep water wave motion, J. Phys. A, Volume 34 (2001), pp. 1405-1417
[4] A. Constantin, W. Strauss, Exact steady periodic water waves with vorticity, 2002 (in preparation)
[5] Bifurcation from simple eigenvalues, J. Funct. Anal, Volume 8 (1971), pp. 321-340
[6] Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, J. Math. Pures Appl, Volume 13 (1934), pp. 217-291
[7] Theorie der Wellen, Abh. Königl. Böhm. Ges. Wiss, 1802
[8] Contribution à la théorie des houles, Ann. Fac. Sci. Univ. Toulouse, Volume 22 (1958), pp. 1-55
[9] Global continuation in nonlinear elasticity, Arch. Rat. Mech. Anal, Volume 143 (1998), pp. 1-28
[10] A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997
[11] On the existence theory for irrotational water waves, Math. Proc. Cambridge Philos. Soc, Volume 83 (1978), pp. 137-157
[12] Multiple eigenvalue bifurcation for Fredholm operators, J. Reine Angew. Math, Volume 358 (1985), pp. 104-124
[13] On the theory of steady-state waves of finite amplitude, USSR Comput. Math. Phys, Volume 1 (1961), pp. 996-1018
[14] Determinazione rigorosa delle onde irrotazionali periodiche in acqua profonda, Rend. Accad. Lincei, Volume 33 (1924), pp. 141-150
[15] Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc, Volume 295 (1986), pp. 509-546
[16] J.B. McLeod, The Stokes and Krasovskii conjectures for the wave of greatest height, Univ. of Wisconsin M.R.C. Report No. 2041, 1979
[17] On steady waves, Izv. Ivanovo-Voznesenk. Politekhn, Volume 3 (1921)
[18] Some global results for nonlinear eigenvalue problems, J. Funct. Anal, Volume 7 (1971), pp. 487-513
[19] A symmetry property in potential theory, Arch. Rat. Mech. Anal, Volume 43 (1971), pp. 304-318
[20] On the theory of oscillatory waves, Trans. Cambridge Philos. Soc, Volume 8 (1847), pp. 441-455
[21] Détermination rigoureuse des ondes irrotationelles périodiques dans un canal á profondeur finie, Math. Ann, Volume 95 (1926), pp. 595-634
[22] On the existence of a wave of greatest height and Stokes's conjecture, Proc. Roy. Soc. London A, Volume 363 (1978), pp. 469-485
[23] Stokes waves, Topological Meth. Nonl. Anal, Volume 7 (1996), pp. 1-48
[24] Existenzbeweis für permanente Kapillar/Schwerewellen mit allgemeine Wirbelverteilungen, Arch. Rat. Mech. Anal, Volume 50 (1973), pp. 34-72
- On the Construction of Traveling Water Waves with Constant Vorticity and Infinite Boundary, International Journal of Mathematics and Mathematical Sciences, Volume 2023 (2023) no. 1 | DOI:10.1155/2023/6317674
- On the regularity and symmetry of periodic traveling solutions to weakly dispersive equations with cubic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 6, p. 6403 | DOI:10.1002/mma.8913
- Symmetry of Periodic Traveling Waves for Nonlocal Dispersive Equations, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 1, p. 486 | DOI:10.1137/21m1433162
- Bounded Traveling Waves of the (2+1)-Dimensional Zoomeron Equation, Mathematical Problems in Engineering, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/163597
- BOUNDED TRAVELING WAVES OF THE GENERALIZED BURGERS–FISHER EQUATION, International Journal of Bifurcation and Chaos, Volume 23 (2013) no. 03, p. 1350054 | DOI:10.1142/s0218127413500545
- A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques, Communications on Pure and Applied Analysis, Volume 11 (2012) no. 4, p. 1497 | DOI:10.3934/cpaa.2012.11.1497
- A New Lagrangian Asymptotic Solution for Gravity–Capillary Waves in Water of Finite Depth, Journal of Mathematical Fluid Mechanics, Volume 14 (2012) no. 1, p. 79 | DOI:10.1007/s00021-010-0045-7
- Transverse instability of the line solitary water-waves, Inventiones mathematicae, Volume 184 (2011) no. 2, p. 257 | DOI:10.1007/s00222-010-0290-7
- Bounded traveling waves of the Burgers–Huxley equation, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 4, p. 1047 | DOI:10.1016/j.na.2010.09.012
- Periodic waves over constant vorticity: Some asymptotic results generated by parameter expansions, Wave Motion, Volume 46 (2009) no. 6, p. 339 | DOI:10.1016/j.wavemoti.2009.06.006
- Two-dimensional steady edge waves. Part I: Periodic waves, Wave Motion, Volume 46 (2009) no. 6, p. 363 | DOI:10.1016/j.wavemoti.2009.06.002
- Particle trajectories in linear deep-water waves, Nonlinear Analysis: Real World Applications, Volume 9 (2008) no. 4, p. 1336 | DOI:10.1016/j.nonrwa.2007.03.003
- Stability properties of steady water waves with vorticity, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 6, p. 911 | DOI:10.1002/cpa.20165
- Symmetry of steady periodic gravity water waves with vorticity, Duke Mathematical Journal, Volume 140 (2007) no. 3 | DOI:10.1215/s0012-7094-07-14034-1
- Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves, Journal of Nonlinear Mathematical Physics, Volume 14 (2007) no. 1, p. 1 | DOI:10.2991/jnmp.2007.14.1.1
- Symmetry of steady periodic water waves with vorticity, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 365 (2007) no. 1858, p. 2203 | DOI:10.1098/rsta.2007.2002
- Rotational steady water waves near stagnation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 365 (2007) no. 1858, p. 2227 | DOI:10.1098/rsta.2007.2004
- Particle trajectories in linear periodic capillary and capillary–gravity water waves, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 365 (2007) no. 1858, p. 2241 | DOI:10.1098/rsta.2007.2005
- Steady periodic capillary waves with vorticity, Arkiv för Matematik, Volume 44 (2006) no. 2, p. 367 | DOI:10.1007/s11512-006-0024-7
- The trajectories of particles in deep-water Stokes waves, International Mathematics Research Notices (2006) | DOI:10.1155/imrn/2006/23405
- A Note on Surface Profiles for Symmetric Gravity Waves with Vorticity, Journal of Nonlinear Mathematical Physics, Volume 13 (2006) no. 1, p. 1 | DOI:10.2991/jnmp.2006.13.1.1
- A unique continuation principle for steady symmetric water waves with vorticity, Journal of Nonlinear Mathematical Physics, Volume 13 (2006) no. 4, p. 484 | DOI:10.2991/jnmp.2006.13.4.3
- Uniqueness of Steady Symmetric Deep-Water Waves with Vorticity, Journal of Nonlinear Mathematical Physics, Volume 12 (2005) no. 1, p. 27 | DOI:10.2991/jnmp.2005.12.1.4
- Exact steady periodic water waves with vorticity, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 4, p. 481 | DOI:10.1002/cpa.3046
- Steady Water Waves, Journal of Nonlinear Mathematical Physics, Volume 11 (2004) no. 4, p. 435 | DOI:10.2991/jnmp.2004.11.4.2
- Periodic Traveling Water Waves with Isobaric Streamlines, Journal of Nonlinear Mathematical Physics, Volume 11 (2004) no. 4, p. 461 | DOI:10.2991/jnmp.2004.11.4.3
- Uniqueness for Autonomous Planar Differential Equations and the Lagrangian Formulation of Water Flows with Vorticity, Journal of Nonlinear Mathematical Physics, Volume 11 (2004) no. 4, p. 549 | DOI:10.2991/jnmp.2004.11.4.10
Cité par 27 documents. Sources : Crossref
Commentaires - Politique