Comptes Rendus
A formalism for the differentiation of conservation laws
[Un formalisme pour la dérivation des lois de conservations]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 839-845.

On présente une méthode synthétique pour calculer les équations vérifiées par la dérivée par rapport à un paramètre de la solution v d'un système sous forme ∇·v=0. On montre, pour les équations de Burgers, Euler et Saint-Venant que la dérivée au sens usuel, mais interpretée au sens des distributions, contient les conditions de saut, c'est à dire les dérivées des conditions de transmission aux chocs. On retrouve ainsi les résultats de Godlewski–Raviart et al. que l'on étend aux équations d'Euler.

In this paper we present a synthetic method to differentiate with respect to a parameter partial differential equations in divergence form with shocks. We show that the usual derivatives contain the differentiated interface conditions if interpreted by the theory of distributions. We apply the method to three problems: the Burgers equation, the shallow water equations and Euler equations for fluids.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02574-8

Claude Bardos 1 ; Olivier Pironneau 1

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 175, rue du Chevaleret, Paris 75013, France
@article{CRMATH_2002__335_10_839_0,
     author = {Claude Bardos and Olivier Pironneau},
     title = {A formalism for the differentiation of conservation laws},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {839--845},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02574-8},
     language = {en},
}
TY  - JOUR
AU  - Claude Bardos
AU  - Olivier Pironneau
TI  - A formalism for the differentiation of conservation laws
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 839
EP  - 845
VL  - 335
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02574-8
LA  - en
ID  - CRMATH_2002__335_10_839_0
ER  - 
%0 Journal Article
%A Claude Bardos
%A Olivier Pironneau
%T A formalism for the differentiation of conservation laws
%J Comptes Rendus. Mathématique
%D 2002
%P 839-845
%V 335
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02574-8
%G en
%F CRMATH_2002__335_10_839_0
Claude Bardos; Olivier Pironneau. A formalism for the differentiation of conservation laws. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 839-845. doi : 10.1016/S1631-073X(02)02574-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02574-8/

[1] C. Bernardi; O. Pironneau Sensitivities to discontinuities in Darcy's Law, C. R. Acad. Sci. Paris, Série I, Volume 335 (2002), pp. 1-6

[2] N. Di Cesare; O. Pironneau Shock sensitivity analysis, Comput. Fluid Dynamics J, Volume 9 (2000) no. 2

[3] K. Eriksson; C. Johnson; S. Larsson Adaptive finite element methods for parabolic problems. VI. Analytic semigroups, SIAM J. Numer. Anal, Volume 35 (1998), pp. 1315-1325

[4] M.A. Giles; N.A. Pierce Analytic adjoint solutions for the quasi-one-dimensional euler equations, J. Fluid Mech, Volume 426 (2001), pp. 327-345

[5] E. Godlewski, P.-A. Raviart, An introduction to the linearized stability of solutions of nonlinear hyperbolic systems of conservation laws, UPMC-J.-L. Lions Laboratory report R0003, 2000

[6] E. Godlewski, P.-A. Raviart, The linearized stability of solutions of nonlinear hyperbolic systems of conservation laws: A general numerical approach. of conservation laws, UPMC-J.-L. Lions Laboratory report R9850, 1998

[7] E. Godlewski; M. Olazabal; P.A. Raviart On the linearization of hyperbolic systems of conservation laws. Application to stability, Équations aux dérivées partielles et applications, Gauthier-Villars, Elsevier, Paris, 1998, pp. 549-570

[8] R. Glowinski Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984

[9] A. Griewank Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation, Frontiers Appl. Math, 19, SIAM, 2000

[10] C. Homescu, I. Navon, Numerical and theoretical considerations for sensitivity calculation of discontinuous. Systems Control Lett., to appear

[11] S. Jaouen, Étude mathématiques et numérique de stabilité pour des modèles hydrodynamiques, Thèse, Université Paris VI, 2001

[12] P.-L. Lions Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford University Press, 1996

[13] A. Majda The Stability of Multi-dimensional Shock Fronts, Mem. Amer. Math. Soc, 281, American Mathematical Society, Providence, RI, 1983

[14] J. Nečas Écoulements de fluide : compacité par entropie, Masson, Paris, 1989

[15] T.-P. Liu Hyperbolic and viscous conservation laws, CBMS-NSF Regional Conference Series in Applied Mathematics, 72, SIAM, Philadelphia, PA, 2000

  • Carlos Lozano; Jorge Ponsin Shock Equations and Jump Conditions for the 2D Adjoint Euler Equations, Aerospace, Volume 10 (2023) no. 3, p. 267 | DOI:10.3390/aerospace10030267
  • Michael Herty; Stefan Ulbrich Numerics and control of conservation laws, Numerical Control: Part B, Volume 24 (2023), p. 473 | DOI:10.1016/bs.hna.2022.11.004
  • Fabio Ancona; Bani Anvari; Olivier Glass; Michael Herty Control methods in hyperbolic PDEs. Abstracts from the workshop held November 5–10, 2023, Oberwolfach Rep. 20, No. 4, 2941-3011, 2023 | DOI:10.4171/owr/2023/52 | Zbl:1546.00045
  • Martin Gugat; Michael Herty Modeling, control, and numerics of gas networks, Numerical Control: Part A, Volume 23 (2022), p. 59 | DOI:10.1016/bs.hna.2021.12.002
  • Michael Herty; Jonathan Hüser; Uwe Naumann; Thomas Schilden; Wolfgang Schröder Algorithmic differentiation of hyperbolic flow problems, Journal of Computational Physics, Volume 430 (2021), p. 17 (Id/No 110110) | DOI:10.1016/j.jcp.2021.110110 | Zbl:7506535
  • Johann M. Schmitt; Stefan Ulbrich Optimal boundary control of hyperbolic balance laws with state constraints, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 2, pp. 1341-1369 | DOI:10.1137/19m129797x | Zbl:1461.49032
  • Maxime Stauffert; Régis Duvigneau Shape sensitivity analysis in aerodynamics using an isogeometric discontinuous Galerkin method, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 5, p. b1081-b1104 | DOI:10.1137/20m1356269 | Zbl:1487.65159
  • Camilla Fiorini; Christophe Chalons; Régis Duvigneau A modified sensitivity equation method for the Euler equations in presence of shocks, Numerical Methods for Partial Differential Equations, Volume 36 (2020) no. 4, pp. 839-867 | DOI:10.1002/num.22454 | Zbl:7771417
  • C. Chalons; R. Duvigneau; C. Fiorini Sensitivity analysis and numerical diffusion effects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinates, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 6, p. a3955-a3981 | DOI:10.1137/17m1140807 | Zbl:1417.65159
  • Christophe Chalons; Régis Duvigneau; Camilla Fiorini Sensitivity analysis for the Euler equations in Lagrangian coordinates, Finite volumes for complex applications VIII – hyperbolic, elliptic and parabolic problems. FVCA 8, Lille, France, June 12–16, 2017, Cham: Springer, 2017, pp. 71-79 | DOI:10.1007/978-3-319-57394-6_8 | Zbl:1365.76143
  • Rodrigo Lecaros; Enrique Zuazua Control of 2D scalar conservation laws in the presence of shocks, Mathematics of Computation, Volume 85 (2016) no. 299, pp. 1183-1224 | DOI:10.1090/mcom/3015 | Zbl:1336.35239
  • Carlos Castro Gradient Calculus for a Class of Optimal Design Problems in Engineering, Advances in Numerical Simulation in Physics and Engineering, Volume 3 (2014), p. 225 | DOI:10.1007/978-3-319-02839-2_5
  • Bijan Mohammadi Uncertainty quantification by geometric characterization of sensitivity spaces, Computer Methods in Applied Mechanics and Engineering, Volume 280 (2014), pp. 197-221 | DOI:10.1016/j.cma.2014.07.021 | Zbl:1425.65058
  • Rodrigo Lecaros; Enrique Zuazua Tracking control of 1D scalar conservation laws in the presence of shocks, Trends in contemporary mathematics. Selected talks based on the presentations at the INdAM day, June 18, 2014, Cham: Springer, 2014, pp. 195-219 | DOI:10.1007/978-3-319-05254-0_15 | Zbl:1325.49032
  • Vincent Guinot; Carole Delenne MUSCL schemes for the shallow water sensitivity equations with passive scalar transport, Computers and Fluids, Volume 59 (2012), pp. 11-30 | DOI:10.1016/j.compfluid.2012.02.001 | Zbl:1365.76154
  • Frédéric Alauzet; Bijan Mohammadi; Olivier Pironneau Mesh Adaptivity and Optimal Shape Design for Aerospace, Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Volume 66 (2012), p. 323 | DOI:10.1007/978-1-4614-2435-2_14
  • H. Telib; E. Arian; A. Iollo The effect of shocks on second order sensitivities for the quasi-one-dimensional Euler equations, Journal of Computational Physics, Volume 230 (2011) no. 23, pp. 8603-8618 | DOI:10.1016/j.jcp.2011.08.010 | Zbl:1367.76032
  • Carlos Castro; Enrique Zuazua Flux identification for 1-d scalar conservation laws in the presence of shocks, Mathematics of Computation, Volume 80 (2011) no. 276, pp. 2025-2070 | DOI:10.1090/s0025-5718-2011-02465-8 | Zbl:1228.49004
  • C. Castro; F. Palacios; E. Zuazua Optimal Control and Vanishing Viscosity for the Burgers Equation, Integral Methods in Science and Engineering, Volume 2 (2010), p. 65 | DOI:10.1007/978-0-8176-4897-8_7
  • Antonio Baeza; Carlos Castro; Francisco Palacios; Enrique Zuazua 2-D Euler Shape Design on Nonregular Flows Using Adjoint Rankine-Hugoniot Relations, AIAA Journal, Volume 47 (2009) no. 3, p. 552 | DOI:10.2514/1.37149
  • V. Guinot; C. Delenne; B. Cappelaere An approximate Riemann solver for sensitivity equations with discontinuous solutions, Advances in Water Resources, Volume 32 (2009) no. 1, p. 61 | DOI:10.1016/j.advwatres.2008.10.002
  • V. Guinot Upwind finite volume solution of sensitivity equations for hyperbolic systems of conservation laws with discontinuous solutions, Computers and Fluids, Volume 38 (2009) no. 9, pp. 1697-1709 | DOI:10.1016/j.compfluid.2009.03.002 | Zbl:1177.76227
  • Eyal Arian; Angelo Iollo Analytic Hessian derivation for the quasi-one-dimensional Euler equations, Journal of Computational Physics, Volume 228 (2009) no. 2, pp. 476-490 | DOI:10.1016/j.jcp.2008.09.021 | Zbl:1162.76049
  • Antonio Baeza; Carlos Castro; Francisco Palacios; Enrique Zuazua, 46th AIAA Aerospace Sciences Meeting and Exhibit (2008) | DOI:10.2514/6.2008-171
  • François James; Marie Postel Numerical gradient methods for flux identification in a system of conservation laws, Journal of Engineering Mathematics, Volume 60 (2008) no. 3-4, pp. 293-317 | DOI:10.1007/s10665-007-9165-3 | Zbl:1137.65056
  • Carlos Castro; Francisco Palacios; Enrique Zuazua An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks, M3AS. Mathematical Models Methods in Applied Sciences, Volume 18 (2008) no. 3, pp. 369-416 | DOI:10.1142/s0218202508002723 | Zbl:1160.35012
  • Vincent Guinot; Matthieu Leménager; Bernard Cappelaere Sensitivity equations for hyperbolic conservation law-based flow models, Advances in Water Resources, Volume 30 (2007) no. 9, p. 1943 | DOI:10.1016/j.advwatres.2007.03.004
  • Olivier Pironneau Corrected nonconservative schemes, Chinese Annals of Mathematics. Series B, Volume 27 (2006) no. 5, pp. 539-548 | DOI:10.1007/s11401-005-0216-7 | Zbl:1116.35090
  • Philippe Hoch; Olivier Pironneau A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 342 (2006) no. 2, pp. 151-156 | DOI:10.1016/j.crma.2005.11.007 | Zbl:1134.76057
  • Claude Bardos; Olivier Pironneau Control of Shocks in CFD, Computational Fluid Dynamics 2004 (2006), p. 27 | DOI:10.1007/3-540-31801-1_3
  • Bijan Mohammadi; Olivier Pironneau SHAPE OPTIMIZATION IN FLUID MECHANICS, Annual Review of Fluid Mechanics, Volume 36 (2004) no. 1, p. 255 | DOI:10.1146/annurev.fluid.36.050802.121926
  • Olivier Pironneau Shape sensitivity and design for fluids with shocks, International Journal of Computational Fluid Dynamics, Volume 17 (2003) no. 4, pp. 235-242 | DOI:10.1080/1061856031000113617 | Zbl:1043.76535
  • Chris Homescu; I. M. Navon Optimal control of flow with discontinuities., Journal of Computational Physics, Volume 187 (2003) no. 2, pp. 660-682 | DOI:10.1016/s0021-9991(03)00154-2 | Zbl:1061.76076

Cité par 33 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: