[Un formalisme pour la dérivation des lois de conservations]
On présente une méthode synthétique pour calculer les équations vérifiées par la dérivée par rapport à un paramètre de la solution v d'un système sous forme ∇·v=0. On montre, pour les équations de Burgers, Euler et Saint-Venant que la dérivée au sens usuel, mais interpretée au sens des distributions, contient les conditions de saut, c'est à dire les dérivées des conditions de transmission aux chocs. On retrouve ainsi les résultats de Godlewski–Raviart et al. que l'on étend aux équations d'Euler.
In this paper we present a synthetic method to differentiate with respect to a parameter partial differential equations in divergence form with shocks. We show that the usual derivatives contain the differentiated interface conditions if interpreted by the theory of distributions. We apply the method to three problems: the Burgers equation, the shallow water equations and Euler equations for fluids.
Publié le :
Claude Bardos 1 ; Olivier Pironneau 1
@article{CRMATH_2002__335_10_839_0, author = {Claude Bardos and Olivier Pironneau}, title = {A formalism for the differentiation of conservation laws}, journal = {Comptes Rendus. Math\'ematique}, pages = {839--845}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02574-8}, language = {en}, }
Claude Bardos; Olivier Pironneau. A formalism for the differentiation of conservation laws. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 839-845. doi : 10.1016/S1631-073X(02)02574-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02574-8/
[1] Sensitivities to discontinuities in Darcy's Law, C. R. Acad. Sci. Paris, Série I, Volume 335 (2002), pp. 1-6
[2] Shock sensitivity analysis, Comput. Fluid Dynamics J, Volume 9 (2000) no. 2
[3] Adaptive finite element methods for parabolic problems. VI. Analytic semigroups, SIAM J. Numer. Anal, Volume 35 (1998), pp. 1315-1325
[4] Analytic adjoint solutions for the quasi-one-dimensional euler equations, J. Fluid Mech, Volume 426 (2001), pp. 327-345
[5] E. Godlewski, P.-A. Raviart, An introduction to the linearized stability of solutions of nonlinear hyperbolic systems of conservation laws, UPMC-J.-L. Lions Laboratory report R0003, 2000
[6] E. Godlewski, P.-A. Raviart, The linearized stability of solutions of nonlinear hyperbolic systems of conservation laws: A general numerical approach. of conservation laws, UPMC-J.-L. Lions Laboratory report R9850, 1998
[7] On the linearization of hyperbolic systems of conservation laws. Application to stability, Équations aux dérivées partielles et applications, Gauthier-Villars, Elsevier, Paris, 1998, pp. 549-570
[8] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984
[9] Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation, Frontiers Appl. Math, 19, SIAM, 2000
[10] C. Homescu, I. Navon, Numerical and theoretical considerations for sensitivity calculation of discontinuous. Systems Control Lett., to appear
[11] S. Jaouen, Étude mathématiques et numérique de stabilité pour des modèles hydrodynamiques, Thèse, Université Paris VI, 2001
[12] Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford University Press, 1996
[13] The Stability of Multi-dimensional Shock Fronts, Mem. Amer. Math. Soc, 281, American Mathematical Society, Providence, RI, 1983
[14] Écoulements de fluide : compacité par entropie, Masson, Paris, 1989
[15] Hyperbolic and viscous conservation laws, CBMS-NSF Regional Conference Series in Applied Mathematics, 72, SIAM, Philadelphia, PA, 2000
- Shock Equations and Jump Conditions for the 2D Adjoint Euler Equations, Aerospace, Volume 10 (2023) no. 3, p. 267 | DOI:10.3390/aerospace10030267
- Numerics and control of conservation laws, Numerical Control: Part B, Volume 24 (2023), p. 473 | DOI:10.1016/bs.hna.2022.11.004
- Control methods in hyperbolic PDEs. Abstracts from the workshop held November 5–10, 2023, Oberwolfach Rep. 20, No. 4, 2941-3011, 2023 | DOI:10.4171/owr/2023/52 | Zbl:1546.00045
- Modeling, control, and numerics of gas networks, Numerical Control: Part A, Volume 23 (2022), p. 59 | DOI:10.1016/bs.hna.2021.12.002
- Algorithmic differentiation of hyperbolic flow problems, Journal of Computational Physics, Volume 430 (2021), p. 17 (Id/No 110110) | DOI:10.1016/j.jcp.2021.110110 | Zbl:7506535
- Optimal boundary control of hyperbolic balance laws with state constraints, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 2, pp. 1341-1369 | DOI:10.1137/19m129797x | Zbl:1461.49032
- Shape sensitivity analysis in aerodynamics using an isogeometric discontinuous Galerkin method, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 5, p. b1081-b1104 | DOI:10.1137/20m1356269 | Zbl:1487.65159
- A modified sensitivity equation method for the Euler equations in presence of shocks, Numerical Methods for Partial Differential Equations, Volume 36 (2020) no. 4, pp. 839-867 | DOI:10.1002/num.22454 | Zbl:7771417
- Sensitivity analysis and numerical diffusion effects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinates, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 6, p. a3955-a3981 | DOI:10.1137/17m1140807 | Zbl:1417.65159
- Sensitivity analysis for the Euler equations in Lagrangian coordinates, Finite volumes for complex applications VIII – hyperbolic, elliptic and parabolic problems. FVCA 8, Lille, France, June 12–16, 2017, Cham: Springer, 2017, pp. 71-79 | DOI:10.1007/978-3-319-57394-6_8 | Zbl:1365.76143
- Control of 2D scalar conservation laws in the presence of shocks, Mathematics of Computation, Volume 85 (2016) no. 299, pp. 1183-1224 | DOI:10.1090/mcom/3015 | Zbl:1336.35239
- Gradient Calculus for a Class of Optimal Design Problems in Engineering, Advances in Numerical Simulation in Physics and Engineering, Volume 3 (2014), p. 225 | DOI:10.1007/978-3-319-02839-2_5
- Uncertainty quantification by geometric characterization of sensitivity spaces, Computer Methods in Applied Mechanics and Engineering, Volume 280 (2014), pp. 197-221 | DOI:10.1016/j.cma.2014.07.021 | Zbl:1425.65058
- Tracking control of 1D scalar conservation laws in the presence of shocks, Trends in contemporary mathematics. Selected talks based on the presentations at the INdAM day, June 18, 2014, Cham: Springer, 2014, pp. 195-219 | DOI:10.1007/978-3-319-05254-0_15 | Zbl:1325.49032
- MUSCL schemes for the shallow water sensitivity equations with passive scalar transport, Computers and Fluids, Volume 59 (2012), pp. 11-30 | DOI:10.1016/j.compfluid.2012.02.001 | Zbl:1365.76154
- Mesh Adaptivity and Optimal Shape Design for Aerospace, Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Volume 66 (2012), p. 323 | DOI:10.1007/978-1-4614-2435-2_14
- The effect of shocks on second order sensitivities for the quasi-one-dimensional Euler equations, Journal of Computational Physics, Volume 230 (2011) no. 23, pp. 8603-8618 | DOI:10.1016/j.jcp.2011.08.010 | Zbl:1367.76032
- Flux identification for 1-d scalar conservation laws in the presence of shocks, Mathematics of Computation, Volume 80 (2011) no. 276, pp. 2025-2070 | DOI:10.1090/s0025-5718-2011-02465-8 | Zbl:1228.49004
- Optimal Control and Vanishing Viscosity for the Burgers Equation, Integral Methods in Science and Engineering, Volume 2 (2010), p. 65 | DOI:10.1007/978-0-8176-4897-8_7
- 2-D Euler Shape Design on Nonregular Flows Using Adjoint Rankine-Hugoniot Relations, AIAA Journal, Volume 47 (2009) no. 3, p. 552 | DOI:10.2514/1.37149
- An approximate Riemann solver for sensitivity equations with discontinuous solutions, Advances in Water Resources, Volume 32 (2009) no. 1, p. 61 | DOI:10.1016/j.advwatres.2008.10.002
- Upwind finite volume solution of sensitivity equations for hyperbolic systems of conservation laws with discontinuous solutions, Computers and Fluids, Volume 38 (2009) no. 9, pp. 1697-1709 | DOI:10.1016/j.compfluid.2009.03.002 | Zbl:1177.76227
- Analytic Hessian derivation for the quasi-one-dimensional Euler equations, Journal of Computational Physics, Volume 228 (2009) no. 2, pp. 476-490 | DOI:10.1016/j.jcp.2008.09.021 | Zbl:1162.76049
- , 46th AIAA Aerospace Sciences Meeting and Exhibit (2008) | DOI:10.2514/6.2008-171
- Numerical gradient methods for flux identification in a system of conservation laws, Journal of Engineering Mathematics, Volume 60 (2008) no. 3-4, pp. 293-317 | DOI:10.1007/s10665-007-9165-3 | Zbl:1137.65056
- An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks, M
AS. Mathematical Models Methods in Applied Sciences, Volume 18 (2008) no. 3, pp. 369-416 | DOI:10.1142/s0218202508002723 | Zbl:1160.35012 - Sensitivity equations for hyperbolic conservation law-based flow models, Advances in Water Resources, Volume 30 (2007) no. 9, p. 1943 | DOI:10.1016/j.advwatres.2007.03.004
- Corrected nonconservative schemes, Chinese Annals of Mathematics. Series B, Volume 27 (2006) no. 5, pp. 539-548 | DOI:10.1007/s11401-005-0216-7 | Zbl:1116.35090
- A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 342 (2006) no. 2, pp. 151-156 | DOI:10.1016/j.crma.2005.11.007 | Zbl:1134.76057
- Control of Shocks in CFD, Computational Fluid Dynamics 2004 (2006), p. 27 | DOI:10.1007/3-540-31801-1_3
- SHAPE OPTIMIZATION IN FLUID MECHANICS, Annual Review of Fluid Mechanics, Volume 36 (2004) no. 1, p. 255 | DOI:10.1146/annurev.fluid.36.050802.121926
- Shape sensitivity and design for fluids with shocks, International Journal of Computational Fluid Dynamics, Volume 17 (2003) no. 4, pp. 235-242 | DOI:10.1080/1061856031000113617 | Zbl:1043.76535
- Optimal control of flow with discontinuities., Journal of Computational Physics, Volume 187 (2003) no. 2, pp. 660-682 | DOI:10.1016/s0021-9991(03)00154-2 | Zbl:1061.76076
Cité par 33 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier