On considère le problème de positionnement optimal de n centres de production pour une répartition non uniforme de la population. Le critère d'optimisation est une moyenne pondérée de la fonction distance au centre de production le plus proche. Dans cette Note, on étudie le comportement asymptotique du problème quand n tend vers l'infini en le reliant à l'asymptotique d'un problème de transport de masse de type Monge–Kantorovich.
We consider the problem of optimal location of production centres to serve a non-uniform distribution of customers. The location is required to be optimal with respect to the cost of transportation which is modeled by a weighted average of the distance function to the nearest production centre. In this Note we study the asymptotic behaviour of the problem as the number of production centres increases. This is done in connection with the theory of Monge–Kantorovich for mass transportation.
Accepté le :
Publié le :
Guy Bouchitté 1 ; Chloé Jimenez 1 ; Mahadevan Rajesh 1
@article{CRMATH_2002__335_10_853_0, author = {Guy Bouchitt\'e and Chlo\'e Jimenez and Mahadevan Rajesh}, title = {Asymptotique d'un probl\`eme de positionnement optimal}, journal = {Comptes Rendus. Math\'ematique}, pages = {853--858}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02575-X}, language = {fr}, }
Guy Bouchitté; Chloé Jimenez; Mahadevan Rajesh. Asymptotique d'un problème de positionnement optimal. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 853-858. doi : 10.1016/S1631-073X(02)02575-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02575-X/
[1] Hexagonal economic regions solve the location problem, Amer. Math. Monthly, Volume 109 (2002) no. 2, pp. 165-172
[2] New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal, Volume 15 (1990) no. 7, pp. 679-692
[3] Integral representation of convex functionals on a space of measures, J. Funct. Anal, Volume 80 (1988), pp. 398-420
[4] G. Buttazzo, E. Oudet, E. Stepanov, Optimal transportation problems with free Dirichlet regions, Preprint, 2002
[5] An Introduction to Γ-convergence, Birkhäuser, Boston, 1993
- Variational Problems for Sets, A Course in the Calculus of Variations (2023), p. 243 | DOI:10.1007/978-3-031-45036-5_6
-
-Convergence: Theory and Examples, A Course in the Calculus of Variations (2023), p. 287 | DOI:10.1007/978-3-031-45036-5_7 - Weighted Ultrafast Diffusion Equations: From Well-Posedness to Long-Time Behaviour, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 3, p. 1165 | DOI:10.1007/s00205-018-01341-w
- A Gradient Flow Perspective on the Quantization Problem, PDE Models for Multi-Agent Phenomena, Volume 28 (2018), p. 145 | DOI:10.1007/978-3-030-01947-1_7
- Green Base Station Placement for Microwave Backhaul Links, Ubiquitous Networking, Volume 10542 (2017), p. 521 | DOI:10.1007/978-3-319-68179-5_45
- Asymptotic quantization for probability measures on Riemannian manifolds, ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 3, p. 770 | DOI:10.1051/cocv/2015025
- , 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2015) | DOI:10.2514/6.2015-1186
- Benamou-Brenier and other continuous numerical methods, Optimal Transport for Applied Mathematicians, Volume 87 (2015), p. 219 | DOI:10.1007/978-3-319-20828-2_6
- Functionals on the space of probabilities, Optimal Transport for Applied Mathematicians, Volume 87 (2015), p. 249 | DOI:10.1007/978-3-319-20828-2_7
- Where Best to Place a Dirichlet Condition in an Anisotropic Membrane?, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 4, p. 2699 | DOI:10.1137/140999402
- Optimal location problems with routing cost, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 4, p. 1301 | DOI:10.3934/dcds.2014.34.1301
- Asymptotics of an optimal compliance-network problem, Networks Heterogeneous Media, Volume 8 (2013) no. 2, p. 573 | DOI:10.3934/nhm.2013.8.573
- Approximation by finitely supported measures, ESAIM: Control, Optimisation and Calculus of Variations, Volume 18 (2012) no. 2, p. 343 | DOI:10.1051/cocv/2010100
- A Modica-Mortola Approximation for Branched Transport and Applications, Archive for Rational Mechanics and Analysis, Volume 201 (2011) no. 1, p. 115 | DOI:10.1007/s00205-011-0402-6
- Mass transportation and the consistency of the empirical optimal conditional locations, Annals of Operations Research, Volume 181 (2010) no. 1, p. 159 | DOI:10.1007/s10479-010-0711-4
- Optimum and equilibrium in a transport problem with queue penalization effect, Advances in Calculus of Variations, Volume 2 (2009) no. 3 | DOI:10.1515/acv.2009.009
- Long-term planningversusshort-term planning in the asymptotical location problem, ESAIM: Control, Optimisation and Calculus of Variations, Volume 15 (2009) no. 3, p. 509 | DOI:10.1051/cocv:2008034
- Asymptotics of an optimal compliance-location problem, ESAIM: Control, Optimisation and Calculus of Variations, Volume 12 (2006) no. 4, p. 752 | DOI:10.1051/cocv:2006020
Cité par 18 documents. Sources : Crossref
Commentaires - Politique