Comptes Rendus
Conformal fields, restriction properties, degenerate representations and SLE
[Champs conformes, propriété de restriction, représentations dégénérées et SLE]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 947-952.

Nous relions le processus de Schramm–Loewner (SLE) à certaines représentations de plus haut poids dégénérées de l'algèbre de Virasoro. Les propriétés de restriction du SLE étudiées dans [19] s'avèrent être importantes pour établir ce lien. Par ailleurs, diverses considérations et relations de la théorie conforme des champs peuvent ainsi être interprétées en termes du SLE. Ceci permet de faire le lien entre les modèles issus de la physique statistique et la théorie conforme des champs.

We relate the Schramm–Loewner Evolution processes (SLE) to highest-weight representations of the Virasoro Algebra. The restriction properties of SLE that have been recently derived in [19] play a crucial role. In this setup, various considerations from conformal field theory can be interpreted and reformulated via SLE. This enables one to make a concrete link between the two-dimensional discrete critical systems from statistical physics and conformal field theory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02581-5

Roland Friedrich 1 ; Wendelin Werner 1

1 Laboratoire de mathématiques, Université Paris-Sud, 91405 Orsay cedex, France
@article{CRMATH_2002__335_11_947_0,
     author = {Roland Friedrich and Wendelin Werner},
     title = {Conformal fields, restriction properties, degenerate representations and {SLE}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {947--952},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02581-5},
     language = {en},
}
TY  - JOUR
AU  - Roland Friedrich
AU  - Wendelin Werner
TI  - Conformal fields, restriction properties, degenerate representations and SLE
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 947
EP  - 952
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02581-5
LA  - en
ID  - CRMATH_2002__335_11_947_0
ER  - 
%0 Journal Article
%A Roland Friedrich
%A Wendelin Werner
%T Conformal fields, restriction properties, degenerate representations and SLE
%J Comptes Rendus. Mathématique
%D 2002
%P 947-952
%V 335
%N 11
%I Elsevier
%R 10.1016/S1631-073X(02)02581-5
%G en
%F CRMATH_2002__335_11_947_0
Roland Friedrich; Wendelin Werner. Conformal fields, restriction properties, degenerate representations and SLE. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 947-952. doi : 10.1016/S1631-073X(02)02581-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02581-5/

[1] M. Bauer, D. Bernard, SLEκ growth and conformal field theories, Preprint, 2002

[2] V. Beffara, The dimension of the SLE curves, Preprint, 2002

[3] A.A. Belavin; A.M. Polyakov; A.B. Zamolodchikov Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B, Volume 241 (1984), pp. 333-380

[4] J.L. Cardy Conformal invariance and surface critical behavior, Nuclear Phys. B, Volume 240 (1984) no. FS12, pp. 514-532

[5] B. Duplantier; H. Saleur Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett., Volume 57 (1986), pp. 3179-3182

[6] P. Goddard; D. Olive Kac–Moody and Virasoro algebras, A Reprint Volume for Physicists, Adv. Ser. Math. Phys., 3, World Scientific, 1988

[7] Conformal Invariance and Applications to Statistical Mechanics (C. Itzykson; H. Saleur; J.-B. Zuber, eds.), World Scientific, 1988

[8] V.G. Kac Infinite-Dimensional Lie Algebras, CUP, 1990

[9] V.G. Kac; A.K. Raina Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Adv. Ser. Math. Phys., 2, World Scientific, 1987

[10] T.G. Kennedy Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk, Phys. Rev. Lett., Volume 88 (2002), p. 130601

[11] R. Langlands; Y. Pouillot; Y. Saint-Aubin Conformal invariance in two-dimensional percolation, Bull. Amer. Math. Soc., Volume 30 (1994), pp. 1-61

[12] G.F. Lawler, An introduction to the stochastic Loewner evolution, 2001, to appear

[13] G.F. Lawler; O. Schramm; W. Werner Values of Brownian intersection exponents I: Half-plane exponents, Acta Math., Volume 187 (2001), pp. 237-273

[14] G.F. Lawler; O. Schramm; W. Werner Values of Brownian intersection exponents II: Plane exponents, Acta Math., Volume 187 (2001), pp. 275-308

[15] G.F. Lawler; O. Schramm; W. Werner Values of Brownian intersection exponents III: Two sided exponents, Ann. Inst. H. Poincaré, Volume 38 (2002), pp. 109-123

[16] G.F. Lawler; O. Schramm; W. Werner One-arm exponent for critical 2D percolation, Electron. J. Probab., Volume 7 (2002) no. 2

[17] G.F. Lawler, O. Schramm, W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Preprint, 2001

[18] G.F. Lawler, O. Schramm, W. Werner, On the scaling limit of planar self-avoiding walks, Preprint, 2002

[19] G.F. Lawler, O. Schramm, W. Werner, Conformal restriction. The chordal case, Preprint, 2002

[20] G.F. Lawler, W. Werner, The loop-soup, 2002, in preparation

[21] A.M. Polyakov A non-Hamiltonian approach to conformal field theory, Soviet Phys. JETP, Volume 39 (1974), pp. 10-18

[22] S. Rohde, O. Schramm, Basic properties of SLE, Preprint, 2001

[23] O. Schramm Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., Volume 118 (2000), pp. 221-288

[24] S. Smirnov Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris, Série I, Volume 333 (2001) no. 3, pp. 239-244

[25] S. Smirnov; W. Werner Critical exponents for two-dimensional percolation, Math. Res. Lett., Volume 8 (2001), pp. 729-744

[26] W. Werner, Random planar curves and Schramm–Loewner evolutions, in: Lecture Notes of the 2002 St-Flour Summer School, 2002, to appear

  • Federico Camia; Valentino F. Foit; Alberto Gandolfi; Matthew Kleban The Brownian loop soup stress-energy tensor, Journal of High Energy Physics, Volume 2022 (2022) no. 11, p. 26 (Id/No 9) | DOI:10.1007/jhep11(2022)009 | Zbl:1536.81176
  • Nahid Ghodratipour; Shahin Rouhani The expectation value of the number of loops and the left-passage probability in the double-dimer model, Communications in Mathematical Physics, Volume 373 (2020) no. 1, pp. 357-388 | DOI:10.1007/s00220-019-03620-3 | Zbl:1475.82004
  • Benjamin Doyon Conformal loop ensembles and the stress-energy tensor, Letters in Mathematical Physics, Volume 103 (2013) no. 3, pp. 233-284 | DOI:10.1007/s11005-012-0594-1 | Zbl:1263.81253
  • Kazumitsu Sakai Multiple Schramm–Loewner evolutions for conformal field theories with Lie algebra symmetries, Nuclear Physics B, Volume 867 (2013) no. 2, p. 429 | DOI:10.1016/j.nuclphysb.2012.09.019
  • E. Bettelheim; I. A. Gruzberg; A. W. W. Ludwig Quantum Hall transitions: An exact theory based on conformal restriction, Physical Review B, Volume 86 (2012) no. 16 | DOI:10.1103/physrevb.86.165324
  • M A Rajabpour Boundary conformal field theories and loop models, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 34, p. 345004 | DOI:10.1088/1751-8113/42/34/345004
  • Bernard Nienhuis; Wouter Kager Stochastic Löwner evolution and the scaling limit of critical models, Polygons, polyominoes and polycubes, Dordrecht: Springer, 2009, pp. 425-467 | DOI:10.1007/978-1-4020-9927-4_15 | Zbl:1180.82033
  • M A Rajabpour Loop models for conformal field theories, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008) no. 40, p. 405001 | DOI:10.1088/1751-8113/41/40/405001
  • Vincent Beffara The dimension of the SLE curves, The Annals of Probability, Volume 36 (2008) no. 4, pp. 1421-1452 | DOI:10.1214/07-aop364 | Zbl:1165.60007
  • Ilya A Gruzberg Stochastic geometry of critical curves, Schramm–Loewner evolutions and conformal field theory, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 41, p. 12601 | DOI:10.1088/0305-4470/39/41/s01
  • Bertrand Duplantier Course 3 Conformal random geometry, Mathematical statistical physics, École d'ÉtÉ de physique des houches session LXXXIII, Volume 83 (2006), p. 101 | DOI:10.1016/s0924-8099(06)80040-5
  • S. Moghimi-Araghi; M. A. Rajabpour; S. Rouhani SLE(κ,ρ) and boundary Coulomb gas, Nuclear Physics. B, Volume 740 (2006) no. 3, pp. 348-357 | DOI:10.1016/j.nuclphysb.2006.02.018 | Zbl:1109.81349
  • Michel Bauer; Denis Bernard 2D growth processes: SLE and Loewner chains, Physics Reports, Volume 432 (2006) no. 3-4, p. 115 | DOI:10.1016/j.physrep.2006.06.002
  • Adam Gamsa; John Cardy The scaling limit of two cluster boundaries in critical lattice models, Journal of Statistical Mechanics: Theory and Experiment, Volume 2005 (2005) no. 12, p. 26 (Id/No p12009) | DOI:10.1088/1742-5468/2005/12/p12009 | Zbl:1456.81377
  • Wendelin Werner Girsanov's transformation for SLE(κ,ρ) processes, intersection exponents and hiding exponents., Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 13 (2004) no. 1, pp. 121-147 | DOI:10.5802/afst.1066 | Zbl:1059.60099
  • R. Friedrich; J. Kalkkinen On conformal field theory and stochastic Loewner evolution, Nuclear Physics. B, Volume 687 (2004) no. 3, pp. 279-302 | DOI:10.1016/j.nuclphysb.2004.03.025 | Zbl:1149.81352
  • S. Moghimi-Araghi; Mohammad Ali Rajabpour; Shahin Rouhani Logarithmic conformal null vectors and SLE, Physics Letters. B, Volume 600 (2004) no. 3-4, pp. 297-301 | DOI:10.1016/j.physletb.2004.09.016 | Zbl:1247.81432
  • Gregory F. Lawler; Wendelin Werner The Brownian loop soup, Probability Theory and Related Fields, Volume 128 (2004) no. 4, p. 565 | DOI:10.1007/s00440-003-0319-6
  • Gregory Lawler; Oded Schramm; Wendelin Werner Conformal restriction: The chordal case, Journal of the American Mathematical Society, Volume 16 (2003) no. 4, pp. 917-955 | DOI:10.1090/s0894-0347-03-00430-2 | Zbl:1030.60096

Cité par 19 documents. Sources : Crossref, zbMATH

Commentaires - Politique