[Champs conformes, propriété de restriction, représentations dégénérées et SLE]
Nous relions le processus de Schramm–Loewner (SLE) à certaines représentations de plus haut poids dégénérées de l'algèbre de Virasoro. Les propriétés de restriction du SLE étudiées dans [19] s'avèrent être importantes pour établir ce lien. Par ailleurs, diverses considérations et relations de la théorie conforme des champs peuvent ainsi être interprétées en termes du SLE. Ceci permet de faire le lien entre les modèles issus de la physique statistique et la théorie conforme des champs.
We relate the Schramm–Loewner Evolution processes (SLE) to highest-weight representations of the Virasoro Algebra. The restriction properties of SLE that have been recently derived in [19] play a crucial role. In this setup, various considerations from conformal field theory can be interpreted and reformulated via SLE. This enables one to make a concrete link between the two-dimensional discrete critical systems from statistical physics and conformal field theory.
Accepté le :
Publié le :
Roland Friedrich 1 ; Wendelin Werner 1
@article{CRMATH_2002__335_11_947_0, author = {Roland Friedrich and Wendelin Werner}, title = {Conformal fields, restriction properties, degenerate representations and {SLE}}, journal = {Comptes Rendus. Math\'ematique}, pages = {947--952}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02581-5}, language = {en}, }
TY - JOUR AU - Roland Friedrich AU - Wendelin Werner TI - Conformal fields, restriction properties, degenerate representations and SLE JO - Comptes Rendus. Mathématique PY - 2002 SP - 947 EP - 952 VL - 335 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(02)02581-5 LA - en ID - CRMATH_2002__335_11_947_0 ER -
Roland Friedrich; Wendelin Werner. Conformal fields, restriction properties, degenerate representations and SLE. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 947-952. doi : 10.1016/S1631-073X(02)02581-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02581-5/
[1] M. Bauer, D. Bernard, SLEκ growth and conformal field theories, Preprint, 2002
[2] V. Beffara, The dimension of the SLE curves, Preprint, 2002
[3] Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B, Volume 241 (1984), pp. 333-380
[4] Conformal invariance and surface critical behavior, Nuclear Phys. B, Volume 240 (1984) no. FS12, pp. 514-532
[5] Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett., Volume 57 (1986), pp. 3179-3182
[6] Kac–Moody and Virasoro algebras, A Reprint Volume for Physicists, Adv. Ser. Math. Phys., 3, World Scientific, 1988
[7] Conformal Invariance and Applications to Statistical Mechanics (C. Itzykson; H. Saleur; J.-B. Zuber, eds.), World Scientific, 1988
[8] Infinite-Dimensional Lie Algebras, CUP, 1990
[9] Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Adv. Ser. Math. Phys., 2, World Scientific, 1987
[10] Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk, Phys. Rev. Lett., Volume 88 (2002), p. 130601
[11] Conformal invariance in two-dimensional percolation, Bull. Amer. Math. Soc., Volume 30 (1994), pp. 1-61
[12] G.F. Lawler, An introduction to the stochastic Loewner evolution, 2001, to appear
[13] Values of Brownian intersection exponents I: Half-plane exponents, Acta Math., Volume 187 (2001), pp. 237-273
[14] Values of Brownian intersection exponents II: Plane exponents, Acta Math., Volume 187 (2001), pp. 275-308
[15] Values of Brownian intersection exponents III: Two sided exponents, Ann. Inst. H. Poincaré, Volume 38 (2002), pp. 109-123
[16] One-arm exponent for critical 2D percolation, Electron. J. Probab., Volume 7 (2002) no. 2
[17] G.F. Lawler, O. Schramm, W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Preprint, 2001
[18] G.F. Lawler, O. Schramm, W. Werner, On the scaling limit of planar self-avoiding walks, Preprint, 2002
[19] G.F. Lawler, O. Schramm, W. Werner, Conformal restriction. The chordal case, Preprint, 2002
[20] G.F. Lawler, W. Werner, The loop-soup, 2002, in preparation
[21] A non-Hamiltonian approach to conformal field theory, Soviet Phys. JETP, Volume 39 (1974), pp. 10-18
[22] S. Rohde, O. Schramm, Basic properties of SLE, Preprint, 2001
[23] Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., Volume 118 (2000), pp. 221-288
[24] Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris, Série I, Volume 333 (2001) no. 3, pp. 239-244
[25] Critical exponents for two-dimensional percolation, Math. Res. Lett., Volume 8 (2001), pp. 729-744
[26] W. Werner, Random planar curves and Schramm–Loewner evolutions, in: Lecture Notes of the 2002 St-Flour Summer School, 2002, to appear
- The Brownian loop soup stress-energy tensor, Journal of High Energy Physics, Volume 2022 (2022) no. 11, p. 26 (Id/No 9) | DOI:10.1007/jhep11(2022)009 | Zbl:1536.81176
- The expectation value of the number of loops and the left-passage probability in the double-dimer model, Communications in Mathematical Physics, Volume 373 (2020) no. 1, pp. 357-388 | DOI:10.1007/s00220-019-03620-3 | Zbl:1475.82004
- Conformal loop ensembles and the stress-energy tensor, Letters in Mathematical Physics, Volume 103 (2013) no. 3, pp. 233-284 | DOI:10.1007/s11005-012-0594-1 | Zbl:1263.81253
- Multiple Schramm–Loewner evolutions for conformal field theories with Lie algebra symmetries, Nuclear Physics B, Volume 867 (2013) no. 2, p. 429 | DOI:10.1016/j.nuclphysb.2012.09.019
- Quantum Hall transitions: An exact theory based on conformal restriction, Physical Review B, Volume 86 (2012) no. 16 | DOI:10.1103/physrevb.86.165324
- Boundary conformal field theories and loop models, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 34, p. 345004 | DOI:10.1088/1751-8113/42/34/345004
- Stochastic Löwner evolution and the scaling limit of critical models, Polygons, polyominoes and polycubes, Dordrecht: Springer, 2009, pp. 425-467 | DOI:10.1007/978-1-4020-9927-4_15 | Zbl:1180.82033
- Loop models for conformal field theories, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008) no. 40, p. 405001 | DOI:10.1088/1751-8113/41/40/405001
- The dimension of the SLE curves, The Annals of Probability, Volume 36 (2008) no. 4, pp. 1421-1452 | DOI:10.1214/07-aop364 | Zbl:1165.60007
- Stochastic geometry of critical curves, Schramm–Loewner evolutions and conformal field theory, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 41, p. 12601 | DOI:10.1088/0305-4470/39/41/s01
- Course 3 Conformal random geometry, Mathematical statistical physics, École d'ÉtÉ de physique des houches session LXXXIII, Volume 83 (2006), p. 101 | DOI:10.1016/s0924-8099(06)80040-5
-
and boundary Coulomb gas, Nuclear Physics. B, Volume 740 (2006) no. 3, pp. 348-357 | DOI:10.1016/j.nuclphysb.2006.02.018 | Zbl:1109.81349 - 2D growth processes: SLE and Loewner chains, Physics Reports, Volume 432 (2006) no. 3-4, p. 115 | DOI:10.1016/j.physrep.2006.06.002
- The scaling limit of two cluster boundaries in critical lattice models, Journal of Statistical Mechanics: Theory and Experiment, Volume 2005 (2005) no. 12, p. 26 (Id/No p12009) | DOI:10.1088/1742-5468/2005/12/p12009 | Zbl:1456.81377
- Girsanov's transformation for
processes, intersection exponents and hiding exponents., Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 13 (2004) no. 1, pp. 121-147 | DOI:10.5802/afst.1066 | Zbl:1059.60099 - On conformal field theory and stochastic Loewner evolution, Nuclear Physics. B, Volume 687 (2004) no. 3, pp. 279-302 | DOI:10.1016/j.nuclphysb.2004.03.025 | Zbl:1149.81352
- Logarithmic conformal null vectors and SLE, Physics Letters. B, Volume 600 (2004) no. 3-4, pp. 297-301 | DOI:10.1016/j.physletb.2004.09.016 | Zbl:1247.81432
- The Brownian loop soup, Probability Theory and Related Fields, Volume 128 (2004) no. 4, p. 565 | DOI:10.1007/s00440-003-0319-6
- Conformal restriction: The chordal case, Journal of the American Mathematical Society, Volume 16 (2003) no. 4, pp. 917-955 | DOI:10.1090/s0894-0347-03-00430-2 | Zbl:1030.60096
Cité par 19 documents. Sources : Crossref, zbMATH
Commentaires - Politique