[Monodromie fractionnelle des oscillateurs résonnants classiques et quantiques]
We introduce fractional monodromy for a class of integrable fibrations which naturally arise for classical nonlinear oscillator systems with resonance. We show that the same fractional monodromy characterizes the lattice of quantum states in the joint spectrum of the corresponding quantum systems. Results are presented on the example of a two-dimensional oscillator with resonance 1:(−1) and 1:(−2).
La monodromie fractionnelle est introduite pour une classe de fibrations intégrables, qui apparaissent naturellement en mécanique classique dans le cas d'un oscillateur nonlinéaire avec résonance. On démontre, que la même monodromie fractionnelle caractérise de façon qualitative le réseau des états quantiques dans le spectre conjoint des observables pour les systèmes quantiques correspondants. Les résultats sont présentés en utilisant l'exemple d'un oscillateur à deux degrés de liberté avec la résonance 1 :(−1) et 1 :(−2).
Révisé le :
Publié le :
Nikolaı́ N. Nekhoroshev 1, 2 ; Dmitriı́ A. Sadovskiı́ 2 ; Boris I. Zhilinskii 2
@article{CRMATH_2002__335_11_985_0, author = {Nikola{\i}́ N. Nekhoroshev and Dmitri{\i}́ A. Sadovski{\i}́ and Boris I. Zhilinskii}, title = {Fractional monodromy of resonant classical and quantum oscillators}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--988}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02584-0}, language = {en}, }
TY - JOUR AU - Nikolaı́ N. Nekhoroshev AU - Dmitriı́ A. Sadovskiı́ AU - Boris I. Zhilinskii TI - Fractional monodromy of resonant classical and quantum oscillators JO - Comptes Rendus. Mathématique PY - 2002 SP - 985 EP - 988 VL - 335 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(02)02584-0 LA - en ID - CRMATH_2002__335_11_985_0 ER -
%0 Journal Article %A Nikolaı́ N. Nekhoroshev %A Dmitriı́ A. Sadovskiı́ %A Boris I. Zhilinskii %T Fractional monodromy of resonant classical and quantum oscillators %J Comptes Rendus. Mathématique %D 2002 %P 985-988 %V 335 %N 11 %I Elsevier %R 10.1016/S1631-073X(02)02584-0 %G en %F CRMATH_2002__335_11_985_0
Nikolaı́ N. Nekhoroshev; Dmitriı́ A. Sadovskiı́; Boris I. Zhilinskii. Fractional monodromy of resonant classical and quantum oscillators. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 985-988. doi : 10.1016/S1631-073X(02)02584-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02584-0/
[1] Mathematical Methods of Classical Mechanics, Springer, New York, 1981
[2] Geometry and Topology of Integrable Geodesic Flows on Surfaces, Ser. Regular and Chaotic Dynamics, II, Editorial URSS, Moscow, 1999
[3] Quantum monodromy in the spectrum of H2O and other systems: New insight into the level structure of quasi linear molecules, Molecular Phys., Volume 96 (1999), pp. 371-379
[4] Y. Colin de Verdière, S. Vũ Ng
[5] Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997
[6] The quantum mechanical spherical pendulum, Bull. Am. Math. Soc., Volume 19 (1988), pp. 475-479
[7] Monodromy in the hydrogen atom, Physica D, Volume 65 (2000), pp. 166-196
[8] Le problème général des variables action-angle, J. Differential Geom., Volume 26 (1987), pp. 223-251
[9] On global action angle coordinates, Comm. Pure Appl. Math., Volume 33 (1980), pp. 687-706
[10] Topological Chern indexes in molecular spectra, Phys. Rev. Lett., Volume 85 (2000), pp. 960-963
[11] Monodromy in systems with coupled angular momenta and rearrangement of bands in quantum spectra, Phys. Rev. A, Volume 142 (2002) (012105-1–15)
[12] Four Dimensional Integrable Hamiltonian Systems with Simple Singular Points, Transl. Math. Monographs, 176, American Mathematical Society, Providence, RI, 1998
[13] Integrable Hamiltonian systems with two degrees of freedom. The topological structure of saturated neighborhoods of points of focus–focus and saddle–saddle type, Sb. Math., Volume 187 (1996) no. 4, pp. 495-524
[14] Action-angle variables and their generalizations, Trans. Moscow Math. Soc., Volume 26 (1972), pp. 180-198
[15] Quantum monodromy in integrable systems, Comm. Math. Phys., Volume 203 (1999), pp. 465-479
[16] Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, Volume 256 (1999), pp. 235-244
[17] Quantum monodromy in ellipsoidal billiards, Ann. Phys. (N.Y.), Volume 295 (2001), pp. 81-112
[18] A note on focus-focus singularities, Differential Geom. Appl., Volume 7 (1997), pp. 123-130 (Another note on focus–focus singularities Lett. Math. Phys., 60, 2002, pp. 87-89)
- Monodromy in non-integrable systems on certain compact classical phase spaces, Physics Letters. A, Volume 383 (2019) no. 5, pp. 452-457 | DOI:10.1016/j.physleta.2018.11.008 | Zbl:1428.81140
- Topological changes of wave functions associated with Hamiltonian monodromy, Physical Review E, Volume 97 (2018) no. 6 | DOI:10.1103/physreve.97.062216
- Experimental Observation of Classical Dynamical Monodromy, Physical Review Letters, Volume 120 (2018) no. 13 | DOI:10.1103/physrevlett.120.134301
- Monodromy of the fibre with oscillatory singular point of type
, Nelineĭnaya Dinamika, Volume 12 (2016) no. 3, pp. 413-541 | Zbl:1378.37093 - Nekhoroshev's approach to Hamiltonian monodromy, Regular and Chaotic Dynamics, Volume 21 (2016) no. 6, pp. 720-758 | DOI:10.1134/s1560354716060113 | Zbl:1372.37113
- Dynamical monodromy, Physical Review E, Volume 89 (2014) no. 1 | DOI:10.1103/physreve.89.012919
- Uncovering fractional monodromy, Communications in Mathematical Physics, Volume 324 (2013) no. 2, pp. 549-588 | DOI:10.1007/s00220-013-1816-9 | Zbl:1343.37040
- Energy bands: Chern numbers and symmetry, Annals of Physics, Volume 326 (2011) no. 12, pp. 3013-3066 | DOI:10.1016/j.aop.2011.07.002 | Zbl:1236.81217
- A geometric fractional monodromy theorem, Discrete Continuous Dynamical Systems - S, Volume 3 (2010) no. 4, p. 517 | DOI:10.3934/dcdss.2010.3.517
- Integrable Hamiltonian systems with swallowtails, Journal of Physics A: Mathematical and Theoretical, Volume 43 (2010) no. 8, p. 085216 | DOI:10.1088/1751-8113/43/8/085216
- Dynamics near the
resonance, Physica D, Volume 239 (2010) no. 19, pp. 1884-1891 | DOI:10.1016/j.physd.2010.06.012 | Zbl:1205.37073 - Normalization and global analysis of perturbations of the hydrogen atom, Reviews of Modern Physics, Volume 82 (2010) no. 3, p. 2099 | DOI:10.1103/revmodphys.82.2099
- Dynamical manifestations of Hamiltonian monodromy, Annals of Physics, Volume 324 (2009) no. 9, p. 1953 | DOI:10.1016/j.aop.2009.03.008
- Complete classification of qualitatively different perturbations of the hydrogen atom in weak near-orthogonal electric and magnetic fields, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 5, p. 055209 | DOI:10.1088/1751-8113/42/5/055209
- Николай Николаевич Нехорошев (некролог), Успехи математических наук, Volume 64 (2009) no. 3, p. 174 | DOI:10.4213/rm9288
- Fractional monodromy: parallel transport of homology cycles, Differential Geometry and its Applications, Volume 26 (2008) no. 2, pp. 140-150 | DOI:10.1016/j.difgeo.2007.11.011 | Zbl:1149.37030
- Fractional Hamiltonian monodromy from a Gauss-Manin monodromy, Journal of Mathematical Physics, Volume 49 (2008) no. 4, p. 042701 | DOI:10.1063/1.2863614 | Zbl:1152.81613
- Most Typical1∶2Resonant Perturbation of the Hydrogen Atom by Weak Electric and Magnetic Fields, Physical Review Letters, Volume 101 (2008) no. 25 | DOI:10.1103/physrevlett.101.253003
- Global properties of integrable Hamiltonian systems, Regular and Chaotic Dynamics, Volume 13 (2008) no. 6, pp. 602-644 | DOI:10.1134/s1560354708060105 | Zbl:1229.37052
- Fractional monodromy in the
resonance, Advances in Mathematics, Volume 209 (2007) no. 1, pp. 241-273 | DOI:10.1016/j.aim.2006.05.006 | Zbl:1107.37048 - Hamiltonian systems with detuned 1:1:2 resonance: manifestation of bidromy, Annals of Physics, Volume 322 (2007) no. 1, pp. 164-200 | DOI:10.1016/j.aop.2006.09.011 | Zbl:1106.81082
- Fractional monodromy in systems with coupled angular momenta, Journal of Physics A: Mathematical and Theoretical, Volume 40 (2007) no. 43, p. 13075 | DOI:10.1088/1751-8113/40/43/015
- Classification of perturbations of the hydrogen atom by small static electric and magnetic fields, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 463 (2007) no. 2083, pp. 1771-1790 | DOI:10.1098/rspa.2007.1843 | Zbl:1347.37136
- The
resonance, Regular and Chaotic Dynamics, Volume 12 (2007) no. 6, pp. 642-663 | DOI:10.1134/s156035470706007x | Zbl:1229.37039 - Infinitesimally stable and unstable singularities of 2-degrees of freedom completely integrable systems, Regular and Chaotic Dynamics, Volume 12 (2007) no. 6, pp. 717-731 | DOI:10.1134/s1560354707060123 | Zbl:1229.37069
- Дробная монодромия в случае произвольных резонансов, Математический сборник, Volume 198 (2007) no. 3, p. 91 | DOI:10.4213/sm1484
- Quantum monodromy and its generalizations and molecular manifestations, Molecular Physics, Volume 104 (2006) no. 16-17, p. 2595 | DOI:10.1080/00268970600673363
- Hamiltonian Monodromy as Lattice Defect, Topology in Condensed Matter, Volume 150 (2006), p. 165 | DOI:10.1007/3-540-31264-1_8
- Interpretation of quantum Hamiltonian monodromy in terms of lattice defects, Acta Applicandae Mathematicae, Volume 87 (2005) no. 1-3, pp. 281-307 | DOI:10.1007/s10440-005-1164-7 | Zbl:1073.37062
- Types of integrability on a generalizations of Gordon's theorem, Transactions of the Moscow Mathematical Society, Volume 2005 (2005), pp. 169-241 | DOI:10.1090/s0077-1554-05-00149-4 | Zbl:1277.37084
- Monodromy of the quantum
resonant swing spring., Journal of Mathematical Physics, Volume 45 (2004) no. 12, pp. 5076-5100 | DOI:10.1063/1.1811788 | Zbl:1064.81022 - Global bending quantum number and the absence of monodromy in theHCN↔CNHmolecule, Physical Review A, Volume 69 (2004) no. 3 | DOI:10.1103/physreva.69.032504
Cité par 32 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier