Comptes Rendus
Fractional monodromy of resonant classical and quantum oscillators
[Monodromie fractionnelle des oscillateurs résonnants classiques et quantiques]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 985-988.

We introduce fractional monodromy for a class of integrable fibrations which naturally arise for classical nonlinear oscillator systems with resonance. We show that the same fractional monodromy characterizes the lattice of quantum states in the joint spectrum of the corresponding quantum systems. Results are presented on the example of a two-dimensional oscillator with resonance 1:(−1) and 1:(−2).

La monodromie fractionnelle est introduite pour une classe de fibrations intégrables, qui apparaissent naturellement en mécanique classique dans le cas d'un oscillateur nonlinéaire avec résonance. On démontre, que la même monodromie fractionnelle caractérise de façon qualitative le réseau des états quantiques dans le spectre conjoint des observables pour les systèmes quantiques correspondants. Les résultats sont présentés en utilisant l'exemple d'un oscillateur à deux degrés de liberté avec la résonance 1 :(−1) et 1 :(−2).

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02584-0

Nikolaı́ N. Nekhoroshev 1, 2 ; Dmitriı́ A. Sadovskiı́ 2 ; Boris I. Zhilinskii 2

1 Department of mathematics and mechanics, Moscow State University, Moscow, 119 899 Russia
2 Université du Littoral, UMR du CNRS 8101, 59140 Dunkerque, France
@article{CRMATH_2002__335_11_985_0,
     author = {Nikola{\i}́ N. Nekhoroshev and Dmitri{\i}́ A. Sadovski{\i}́ and Boris I. Zhilinskii},
     title = {Fractional monodromy of resonant classical and quantum oscillators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {985--988},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02584-0},
     language = {en},
}
TY  - JOUR
AU  - Nikolaı́ N. Nekhoroshev
AU  - Dmitriı́ A. Sadovskiı́
AU  - Boris I. Zhilinskii
TI  - Fractional monodromy of resonant classical and quantum oscillators
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 985
EP  - 988
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02584-0
LA  - en
ID  - CRMATH_2002__335_11_985_0
ER  - 
%0 Journal Article
%A Nikolaı́ N. Nekhoroshev
%A Dmitriı́ A. Sadovskiı́
%A Boris I. Zhilinskii
%T Fractional monodromy of resonant classical and quantum oscillators
%J Comptes Rendus. Mathématique
%D 2002
%P 985-988
%V 335
%N 11
%I Elsevier
%R 10.1016/S1631-073X(02)02584-0
%G en
%F CRMATH_2002__335_11_985_0
Nikolaı́ N. Nekhoroshev; Dmitriı́ A. Sadovskiı́; Boris I. Zhilinskii. Fractional monodromy of resonant classical and quantum oscillators. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 985-988. doi : 10.1016/S1631-073X(02)02584-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02584-0/

[1] V.I. Arnol'd Mathematical Methods of Classical Mechanics, Springer, New York, 1981

[2] A.V. Bolsinov; A.T. Fomenko Geometry and Topology of Integrable Geodesic Flows on Surfaces, Ser. Regular and Chaotic Dynamics, II, Editorial URSS, Moscow, 1999

[3] M.S. Child; T. Weston; J. Tennyson Quantum monodromy in the spectrum of H2O and other systems: New insight into the level structure of quasi linear molecules, Molecular Phys., Volume 96 (1999), pp. 371-379

[4] Y. Colin de Verdière, S. Vũ Ngo˙c, Singular Bohr–Sommerfeld rules for 2D integrable systems, Preprint 508, Institut Fourier, 2000. Ann. Sci. École Norm. Sup., in press

[5] R.H. Cushman; L.M. Bates Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997

[6] R.H. Cushman; J.J. Duistermaat The quantum mechanical spherical pendulum, Bull. Am. Math. Soc., Volume 19 (1988), pp. 475-479

[7] R.H. Cushman; D.A. Sadovskiı́ Monodromy in the hydrogen atom, Physica D, Volume 65 (2000), pp. 166-196

[8] P. Dazord; T. Delzant Le problème général des variables action-angle, J. Differential Geom., Volume 26 (1987), pp. 223-251

[9] J.J. Duistermaat On global action angle coordinates, Comm. Pure Appl. Math., Volume 33 (1980), pp. 687-706

[10] F. Faure; B.I. Zhilinskii Topological Chern indexes in molecular spectra, Phys. Rev. Lett., Volume 85 (2000), pp. 960-963

[11] L. Grondin; D.A. Sadovskiı́; B.I. Zhilinskii Monodromy in systems with coupled angular momenta and rearrangement of bands in quantum spectra, Phys. Rev. A, Volume 142 (2002) (012105-1–15)

[12] L.M. Lerman; Ya.L. Umanskiı́ Four Dimensional Integrable Hamiltonian Systems with Simple Singular Points, Transl. Math. Monographs, 176, American Mathematical Society, Providence, RI, 1998

[13] V. Matveev Integrable Hamiltonian systems with two degrees of freedom. The topological structure of saturated neighborhoods of points of focus–focus and saddle–saddle type, Sb. Math., Volume 187 (1996) no. 4, pp. 495-524

[14] N.N. Nekhoroshev Action-angle variables and their generalizations, Trans. Moscow Math. Soc., Volume 26 (1972), pp. 180-198

[15] S. Vũ Ng Quantum monodromy in integrable systems, Comm. Math. Phys., Volume 203 (1999), pp. 465-479

[16] D.A. Sadovskiı́; B.I. Zhilinskii Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, Volume 256 (1999), pp. 235-244

[17] H. Waalkens; H.R. Dullin Quantum monodromy in ellipsoidal billiards, Ann. Phys. (N.Y.), Volume 295 (2001), pp. 81-112

[18] N.T. Zung A note on focus-focus singularities, Differential Geom. Appl., Volume 7 (1997), pp. 123-130 (Another note on focus–focus singularities Lett. Math. Phys., 60, 2002, pp. 87-89)

  • Dmitrií A. Sadovskií; Boris I. Zhilinskií Monodromy in non-integrable systems on certain compact classical phase spaces, Physics Letters. A, Volume 383 (2019) no. 5, pp. 452-457 | DOI:10.1016/j.physleta.2018.11.008 | Zbl:1428.81140
  • C. Chen; J. B. Delos Topological changes of wave functions associated with Hamiltonian monodromy, Physical Review E, Volume 97 (2018) no. 6 | DOI:10.1103/physreve.97.062216
  • M. P. Nerem; D. Salmon; S. Aubin; J. B. Delos Experimental Observation of Classical Dynamical Monodromy, Physical Review Letters, Volume 120 (2018) no. 13 | DOI:10.1103/physrevlett.120.134301
  • Nikolaĭ Nikolaevich Nekhoroshev Monodromy of the fibre with oscillatory singular point of type 1:(2), Nelineĭnaya Dinamika, Volume 12 (2016) no. 3, pp. 413-541 | Zbl:1378.37093
  • Dmitrií A. Sadovskí Nekhoroshev's approach to Hamiltonian monodromy, Regular and Chaotic Dynamics, Volume 21 (2016) no. 6, pp. 720-758 | DOI:10.1134/s1560354716060113 | Zbl:1372.37113
  • C. Chen; M. Ivory; S. Aubin; J. B. Delos Dynamical monodromy, Physical Review E, Volume 89 (2014) no. 1 | DOI:10.1103/physreve.89.012919
  • K. Efstathiou; H. W. Broer Uncovering fractional monodromy, Communications in Mathematical Physics, Volume 324 (2013) no. 2, pp. 549-588 | DOI:10.1007/s00220-013-1816-9 | Zbl:1343.37040
  • T. Iwai; B. Zhilinskii Energy bands: Chern numbers and symmetry, Annals of Physics, Volume 326 (2011) no. 12, pp. 3013-3066 | DOI:10.1016/j.aop.2011.07.002 | Zbl:1236.81217
  • Henk Broer; Konstantinos Efstathiou; Olga Lukina A geometric fractional monodromy theorem, Discrete Continuous Dynamical Systems - S, Volume 3 (2010) no. 4, p. 517 | DOI:10.3934/dcdss.2010.3.517
  • K Efstathiou; D Sugny Integrable Hamiltonian systems with swallowtails, Journal of Physics A: Mathematical and Theoretical, Volume 43 (2010) no. 8, p. 085216 | DOI:10.1088/1751-8113/43/8/085216
  • Sven Schmidt; Holger R. Dullin Dynamics near the p:q resonance, Physica D, Volume 239 (2010) no. 19, pp. 1884-1891 | DOI:10.1016/j.physd.2010.06.012 | Zbl:1205.37073
  • K. Efstathiou; D. A. Sadovskií Normalization and global analysis of perturbations of the hydrogen atom, Reviews of Modern Physics, Volume 82 (2010) no. 3, p. 2099 | DOI:10.1103/revmodphys.82.2099
  • J.B. Delos; G. Dhont; D.A. Sadovskií; B.I. Zhilinskií Dynamical manifestations of Hamiltonian monodromy, Annals of Physics, Volume 324 (2009) no. 9, p. 1953 | DOI:10.1016/j.aop.2009.03.008
  • K Efstathiou; O V Lukina; D A Sadovskií Complete classification of qualitatively different perturbations of the hydrogen atom in weak near-orthogonal electric and magnetic fields, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 5, p. 055209 | DOI:10.1088/1751-8113/42/5/055209
  • Александр Михайлович Абрамов; Aleksandr Mikhailovich Abramov; Владимир Игоревич Арнольд; Vladimir Igorevich Arnol'd; Алексей Викторович Болсинов; Aleksei Viktorovich Bolsinov; Александр Николаевич Варченко; Aleksandr Nikolaevich Varchenko; Л Гальгани; L Galgani; Б И Жилинский; B I Zhilinskii; Юлий Сергеевич Ильяшенко; Yulii Sergeevich Il'yashenko; Валерий Васильевич Козлов; Valerii Vasil'evich Kozlov; Анатолий Исерович Нейштадт; Anatolii Iserovich Neishtadt; Влaдимиp Ильич Питербарг; Vladimir Il'ich Piterbarg; Аскольд Георгиевич Хованский; Askold Georgievich Khovanskii; Валерий Владимирович Ященко; Valerii Vladimirovich Yashchenko Николай Николаевич Нехорошев (некролог), Успехи математических наук, Volume 64 (2009) no. 3, p. 174 | DOI:10.4213/rm9288
  • Andrea Giacobbe Fractional monodromy: parallel transport of homology cycles, Differential Geometry and its Applications, Volume 26 (2008) no. 2, pp. 140-150 | DOI:10.1016/j.difgeo.2007.11.011 | Zbl:1149.37030
  • D. Sugny; P. Mardešić; M. Pelletier; A. Jebrane; H. R. Jauslin Fractional Hamiltonian monodromy from a Gauss-Manin monodromy, Journal of Mathematical Physics, Volume 49 (2008) no. 4, p. 042701 | DOI:10.1063/1.2863614 | Zbl:1152.81613
  • K. Efstathiou; O. V. Lukina; D. A. Sadovskií Most Typical1∶2Resonant Perturbation of the Hydrogen Atom by Weak Electric and Magnetic Fields, Physical Review Letters, Volume 101 (2008) no. 25 | DOI:10.1103/physrevlett.101.253003
  • O. V. Lukina; F. Takens; H. W. Broer Global properties of integrable Hamiltonian systems, Regular and Chaotic Dynamics, Volume 13 (2008) no. 6, pp. 602-644 | DOI:10.1134/s1560354708060105 | Zbl:1229.37052
  • K. Efstathiou; R. H. Cushman; D. A. Sadovskií Fractional monodromy in the 12 resonance, Advances in Mathematics, Volume 209 (2007) no. 1, pp. 241-273 | DOI:10.1016/j.aim.2006.05.006 | Zbl:1107.37048
  • D. A. Sadovskiĭ; B. I. Zhilinskiĭ Hamiltonian systems with detuned 1:1:2 resonance: manifestation of bidromy, Annals of Physics, Volume 322 (2007) no. 1, pp. 164-200 | DOI:10.1016/j.aop.2006.09.011 | Zbl:1106.81082
  • M S Hansen; F Faure; B I Zhilinskií Fractional monodromy in systems with coupled angular momenta, Journal of Physics A: Mathematical and Theoretical, Volume 40 (2007) no. 43, p. 13075 | DOI:10.1088/1751-8113/40/43/015
  • K. Efstathiou; D. A. Sadovskií; B. I. Zhilinskií Classification of perturbations of the hydrogen atom by small static electric and magnetic fields, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 463 (2007) no. 2083, pp. 1771-1790 | DOI:10.1098/rspa.2007.1843 | Zbl:1347.37136
  • R. H. Cushman; H. R. Dullin; H. Hanßmann; S. Schmidt The 1:±2 resonance, Regular and Chaotic Dynamics, Volume 12 (2007) no. 6, pp. 642-663 | DOI:10.1134/s156035470706007x | Zbl:1229.37039
  • A. Giacobbe Infinitesimally stable and unstable singularities of 2-degrees of freedom completely integrable systems, Regular and Chaotic Dynamics, Volume 12 (2007) no. 6, pp. 717-731 | DOI:10.1134/s1560354707060123 | Zbl:1229.37069
  • Николай Николаевич Нехорошев; Nikolai Nikolaevich Nekhoroshev; Николай Николаевич Нехорошев; Nikolai Nikolaevich Nekhoroshev Дробная монодромия в случае произвольных резонансов, Математический сборник, Volume 198 (2007) no. 3, p. 91 | DOI:10.4213/sm1484
  • D. A. Sadovskií; B. I. Zhilinskií Quantum monodromy and its generalizations and molecular manifestations, Molecular Physics, Volume 104 (2006) no. 16-17, p. 2595 | DOI:10.1080/00268970600673363
  • B. Zhilinskii Hamiltonian Monodromy as Lattice Defect, Topology in Condensed Matter, Volume 150 (2006), p. 165 | DOI:10.1007/3-540-31264-1_8
  • B. Zhilinskii Interpretation of quantum Hamiltonian monodromy in terms of lattice defects, Acta Applicandae Mathematicae, Volume 87 (2005) no. 1-3, pp. 281-307 | DOI:10.1007/s10440-005-1164-7 | Zbl:1073.37062
  • N. N. Nekhoroshev Types of integrability on a generalizations of Gordon's theorem, Transactions of the Moscow Mathematical Society, Volume 2005 (2005), pp. 169-241 | DOI:10.1090/s0077-1554-05-00149-4 | Zbl:1277.37084
  • A. Giacobbe; R. H. Cushman; D. A. Sadovskiĭ; B. I. Zhilinskiĭ Monodromy of the quantum 1:1:2 resonant swing spring., Journal of Mathematical Physics, Volume 45 (2004) no. 12, pp. 5076-5100 | DOI:10.1063/1.1811788 | Zbl:1064.81022
  • K. Efstathiou; M. Joyeux; D. A. Sadovskií Global bending quantum number and the absence of monodromy in theHCN↔CNHmolecule, Physical Review A, Volume 69 (2004) no. 3 | DOI:10.1103/physreva.69.032504

Cité par 32 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: