Nous cherchons une approximation numérique des solutions discontinues de type onde de choc d'un système hyperbolique non conservatif. Le système considéré est issue d'une modélisation simplifiée d'un écoulement bifluide. Les ondes de choc sont définies par l'introduction d'un tenseur de diffusion. Sur la base d'équations supplémentaires satisfaites par les solutions du système, nous proposons un schéma de type volume fini consistant avec la définition des solutions discontinues
We consider, for numerical approximations, a nonconservative hyperbolic system which arises when modeled a bifluid flow. We introduce a diffusion tensor to define the discontinuous shock wave solutions and we exhibit additional laws satisfied by the smooth solutions. Arguing the additional laws, we propose a numerical method shown to be consistant with the definition of discontinuous solutions.
Accepté le :
Publié le :
Christophe Berthon 1
@article{CRMATH_2002__335_12_1069_0, author = {Christophe Berthon}, title = {Sch\'ema nonlin\'eaire pour l'approximation num\'erique d'un syst\`eme hyperbolique non conservatif}, journal = {Comptes Rendus. Math\'ematique}, pages = {1069--1072}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02615-8}, language = {fr}, }
TY - JOUR AU - Christophe Berthon TI - Schéma nonlinéaire pour l'approximation numérique d'un système hyperbolique non conservatif JO - Comptes Rendus. Mathématique PY - 2002 SP - 1069 EP - 1072 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(02)02615-8 LA - fr ID - CRMATH_2002__335_12_1069_0 ER -
Christophe Berthon. Schéma nonlinéaire pour l'approximation numérique d'un système hyperbolique non conservatif. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1069-1072. doi : 10.1016/S1631-073X(02)02615-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02615-8/
[1] Travelling wave solutions of a convective diffusive system with first and second order terms in nonconservation form, Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, Internat. Ser. Numer. Math., 129, Birkhäuser, 1999, pp. 47-54
[2] A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system, Math. Model. Numer. Anal., Volume 35 (2001) no. 1, pp. 107-127
[3] Definition and weak stability of a nonconservative product, J. Math. Pures Appl., Volume 74 (1995), pp. 483-548
[4] Hyperbolic Systems of Conservations Laws, Appl. Math. Sci., 118, Springer, 1996
[5] Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comp., Volume 62 (1994) no. 206, pp. 497-530
[6] An introduction to nonclassical shocks of systems of conservation laws, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes Comput. Sci. Engrg., 5, Springer, 1999, pp. 28-72
[7] A nonconservative hyperbolic system modelling spray dynamics. Part 1. Solution of the Riemann problem, Math. Models Methods Appl. Sci., Volume 5 (1995) no. 3, pp. 297-333
[8] Ondes progressives solutions de systèmes convectifs–diffusifs et systèmes hyperboliques non conservatifs, C. R. Acad. Sci. Paris, Série I, Volume 312 (1991), pp. 491-494
[9] Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, 1999
- High‐order in‐cell discontinuous reconstruction path‐conservative methods for nonconservative hyperbolic systems–DR.MOOD method, Numerical Methods for Partial Differential Equations, Volume 40 (2024) no. 6 | DOI:10.1002/num.23133
- On the Numerical Solution of Nonconservative Hyperbolic Systems of Equations, Differential Equations, Volume 59 (2023) no. 7, p. 970 | DOI:10.1134/s0012266123070108
- K voprosu o chislennom reshenii nekonservativnykh giperbolicheskikh sistem uravneniy, Дифференциальные уравнения, Volume 59 (2023) no. 7, p. 968 | DOI:10.31857/s0374064123070105
- In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems - Second-order extension, Journal of Computational Physics, Volume 459 (2022), p. 111152 | DOI:10.1016/j.jcp.2022.111152
- Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, Journal of Computational Physics, Volume 382 (2019), p. 1 | DOI:10.1016/j.jcp.2018.12.035
- Entropy-stable space–time DG schemes for non-conservative hyperbolic systems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 3, p. 995 | DOI:10.1051/m2an/2017056
- Schemes with Well-Controlled Dissipation. Hyperbolic Systems in Nonconservative Form, Communications in Computational Physics, Volume 21 (2017) no. 4, p. 913 | DOI:10.4208/cicp.oa-2016-0019
- A new comment on the computation of non-conservative products using Roe-type path conservative schemes, Journal of Computational Physics, Volume 335 (2017), p. 592 | DOI:10.1016/j.jcp.2017.01.016
- Application of averaging techniques to traffic flow theory, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 3, p. 600 | DOI:10.1002/mma.3997
- Numerical methods with controlled dissipation for small-scale dependent shocks, Acta Numerica, Volume 23 (2014), p. 743 | DOI:10.1017/s0962492914000099
- Entropy Conservative and Entropy Stable Schemes for Nonconservative Hyperbolic Systems, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 3, p. 1371 | DOI:10.1137/110845379
- Path-Conservative Numerical Schemes for Nonconservative Hyperbolic Systems, Hyperbolic Problems: Theory, Numerics, Applications (2008), p. 817 | DOI:10.1007/978-3-540-75712-2_84
- WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 12, p. 2055 | DOI:10.1142/s021820250700256x
Cité par 13 documents. Sources : Crossref
Commentaires - Politique