[Solution globale pour modeles de crystaux liquides nématiques]
Par une méthode de penalisation à partir d'un problème simplifiée de type Ericksen–Leslie, nous démontrons l'existence de solution globale pour le modèle limite de crystaux liquides nématiques. Le point essentiel de la démonstration est une nouvelle propieté de compacité du gradient du vecteur directeur.
We prove existence of a global weak solution for a nematic liquid crystal problem by means of a penalization method using a simplified Ericksen–Leslie model and a new compactness property for the gradient of the director field.
Accepté le :
Publié le :
Francisco Guillén-González 1 ; Marko Rojas-Medar 2
@article{CRMATH_2002__335_12_1085_0, author = {Francisco Guill\'en-Gonz\'alez and Marko Rojas-Medar}, title = {Global solution of nematic liquid crystals models}, journal = {Comptes Rendus. Math\'ematique}, pages = {1085--1090}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02620-1}, language = {en}, }
Francisco Guillén-González; Marko Rojas-Medar. Global solution of nematic liquid crystals models. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1085-1090. doi : 10.1016/S1631-073X(02)02620-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02620-1/
[1] Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var., Volume 1 (1993), pp. 123-148
[2] The weak solutions to the evolution problems of harmonic maps, Math. Z., Volume 201 (1989), pp. 69-74
[3] Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals, C. R. Acad. Sci. Paris, Série I, Volume 333 (2001), pp. 919-924
[4] Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Comm. Pure Appl. Math., Volume 42 (1989), pp. 789-814
[5] Non-parabolic dissipative systems modelling the flow of liquid crystals, Comm. Pure Appl. Math., Volume 48 (1995), pp. 501-537
[6] Existence of solutions for the Ericksen–Leslie system, Arch. Rational Mech. Anal., Volume 154 (2000), pp. 135-156
[7] Computational Micro-Magnetism, Adv. Numer. Math., Teubner, 2001
[8] Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Comm. Partial Differential Equations, Volume 27 (2001) no. 5 & 6, pp. 1103-1137
[9] Compact sets in Lp(0,T;B), Ann. Mat. Pura Appl., Volume 146 (1987), pp. 65-97
[10] Navier–Stokes Equations, North-Holland, Elsevier, 1985
Cité par Sources :
☆ The first author has been partially financed by the projet BFM2000-1317, and the second author by the projects CNPq-Brasil 300116-93-4 and Fapesp-Brasil 01/07557-3.
Commentaires - Politique