[Sur l'irréductibilité de la fonction zêta d'une courbe définie sur un corps fini]
R. Pellikaan (Arithmetic, Geometry and Coding Theory, Vol. 4, Walter de Gruyter, Berlin, 1996, pp. 175–184) introduced a two variable zeta-function Z(t,u) for a curve over a finite field
R. Pellikaan (Arithmetic, Geometry and Coding Theory, Vol. 4, Walter de Gruyter, Berlin, 1996, pp. 175–184) a introduit une fonction zêta Z(t,u) en deux variables pour une courbe définie sur un corps fini
Accepté le :
Publié le :
Niko Naumann 1
@article{CRMATH_2003__336_4_289_0, author = {Niko Naumann}, title = {On the irreducibility of the two variable zeta-function for curves over finite fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {289--292}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00039-6}, language = {en}, }
Niko Naumann. On the irreducibility of the two variable zeta-function for curves over finite fields. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 289-292. doi : 10.1016/S1631-073X(03)00039-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00039-6/
[1] C. Deninger, Two-variable zeta functions and regularized products, Preprint, 2002
[2] Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Math., 150, Springer, New York, 1995
[3] Effectivity of Arakelov divisors and the theta divisor of a number field, Selecta Math. (N.S.), Volume 6 (2000) no. 4, pp. 377-398
[4] Algebraic Geometry, Graduate Texts in Math., 52, Springer, New York, 1977
[5] J. Lagarias, E. Rains, On a two-variable zeta function for number fields, , v5, 7 July 2002 | arXiv
[6] On special divisors and the two variable zeta function of algebraic curves over finite fields, Arithmetic, Geometry and Coding Theory, Vol. 4, Luminy, 1993, W. de Gruyter, Berlin, 1996, pp. 175-184
[7] Endomorphisms of Abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 143-144
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier