[Réduction du problème des sections de corps convexes au cas de rapport volumique borné]
Cette Note concerne le problème bien connu de la minoration uniforme de la mesure des sections de codimension 1 de corps convexes isotrope dans
Here we discuss results around the slicing problem, which is a well known open problem in asymptotic convex geometry. We show that if one can prove that the isotropic constant of bodies with a finite volume ratio is uniformly bounded – then it would follow that the isotropic constant of any convex body is uniformly bounded.
Accepté le :
Publié le :
Jean Bourgain 1 ; Bo'az Klartag 2 ; Vitali Milman 2
@article{CRMATH_2003__336_4_331_0, author = {Jean Bourgain and Bo'az Klartag and Vitali Milman}, title = {A reduction of the slicing problem to finite volume ratio bodies}, journal = {Comptes Rendus. Math\'ematique}, pages = {331--334}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00041-4}, language = {en}, }
TY - JOUR AU - Jean Bourgain AU - Bo'az Klartag AU - Vitali Milman TI - A reduction of the slicing problem to finite volume ratio bodies JO - Comptes Rendus. Mathématique PY - 2003 SP - 331 EP - 334 VL - 336 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(03)00041-4 LA - en ID - CRMATH_2003__336_4_331_0 ER -
Jean Bourgain; Bo'az Klartag; Vitali Milman. A reduction of the slicing problem to finite volume ratio bodies. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 331-334. doi : 10.1016/S1631-073X(03)00041-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00041-4/
[1] Normed spaces with a weak-Gordon–Lewis property, Proc. of Funct. Anal., University of Texas and Austin (1987–1989), Lecture Notes in Math., 1470, Springer, 1991, pp. 36-47
[2] On the distribution of polynomials on high dimensional convex sets, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., 1469, Springer, 1991, pp. 127-137
[3] Remarks on Bourgain's problem on slicing of convex bodies, Geometric aspects of functional analysis, Oper. Theory Adv. Appl., 77, Birkhäuser, 1995, pp. 61-66
[4] Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés, C. R. Acad. Sci. Paris, Sér. 1, Volume 320 (1986), pp. 25-28
[5] Geometrical inequalities and mixed volumes in the local theory of Banach spaces, Colloque en l'honneur de Laurent Schwartz, Astérisque, Volume 131 (1985) no. 1, pp. 373-400
[6] Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., 1376, Springer, 1989, pp. 64-104
[7] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., 94, Cambridge University Press, 1997
Cité par Sources :
Commentaires - Politique