Comptes Rendus
Algebraic Geometry
Green–Lazarsfeld's conjecture for generic curves of large gonality
[La conjecture de Green–Lazarsfeld pour les courbes génériques de gonalité élevée]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 335-339.

We use Green's canonical syzygy conjecture for generic curves to prove that the Green–Lazarsfeld gonality conjecture holds for generic curves of genus g, and gonality d, if g/3<d<[g/2]+2.

Nous utilisons la conjecture de Green sur les syzygies canoniques des courbes génériques pour démontrer la conjecture de la gonalité de Green–Lazarsfeld pour les courbes génériques de genre g et gonalité d, avec g/3<d<[g/2]+2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00062-1

Marian Aprodu 1, 2 ; Claire Voisin 3

1 Université de Grenoble 1, laboratoire de mathématiques, institut Fourier, BP 74, 38402 Saint Martin d'Hères cedex, France
2 Romanian Academy, Institute of Mathematics “Simion Stoilow”, PO Box 1-764, 70700, Bucharest, Romania
3 Université Paris 7 Denis Diderot, CNRS UMR 7586, institut de mathématiques, 2, place Jussieu, 75251 Paris cedex 05, France
@article{CRMATH_2003__336_4_335_0,
     author = {Marian Aprodu and Claire Voisin},
     title = {Green{\textendash}Lazarsfeld's conjecture for generic curves of large gonality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {335--339},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00062-1},
     language = {en},
}
TY  - JOUR
AU  - Marian Aprodu
AU  - Claire Voisin
TI  - Green–Lazarsfeld's conjecture for generic curves of large gonality
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 335
EP  - 339
VL  - 336
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00062-1
LA  - en
ID  - CRMATH_2003__336_4_335_0
ER  - 
%0 Journal Article
%A Marian Aprodu
%A Claire Voisin
%T Green–Lazarsfeld's conjecture for generic curves of large gonality
%J Comptes Rendus. Mathématique
%D 2003
%P 335-339
%V 336
%N 4
%I Elsevier
%R 10.1016/S1631-073X(03)00062-1
%G en
%F CRMATH_2003__336_4_335_0
Marian Aprodu; Claire Voisin. Green–Lazarsfeld's conjecture for generic curves of large gonality. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 335-339. doi : 10.1016/S1631-073X(03)00062-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00062-1/

[1] M. Aprodu On the vanishing of higher syzygies of curves, Math. Z., Volume 241 (2002), pp. 1-15

[2] M. Boratyńsky; S. Greco Hilbert functions and Betti numbers in a flat family, Ann. Mat. Pura Appl. (4), Volume 142 (1985), pp. 277-292

[3] S. Ehbauer Syzygies of points in projective space and applications (Orecchia; Ferruccio et al., eds.), Zero-Dimensional Schemes, Proceedings of the International Conference Held in Ravello, Italy, June 8–13, 1992, de Gruyter, Berlin, 1994, pp. 145-170

[4] W. Fulton Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math., Volume 90 (1969), pp. 541-575

[5] M. Green Koszul cohomology and the geometry of projective varieties, J. Differential Geom., Volume 19 (1984), pp. 125-171 (With an Appendix by M. Green and R. Lazarsfeld)

[6] M. Green Koszul cohomology and the geometry of projective varieties. II, J. Differential Geom., Volume 20 (1984), pp. 279-289

[7] M. Green; R. Lazarsfeld On the projective normality of complete linear series on an algebraic curve, Invent. Math., Volume 83 (1986), pp. 73-90

[8] M. Teixidor i Bigas Green's conjecture for the generic r-gonal curve of genus g⩾3r−7, Duke Math. J., Volume 111 (2002), pp. 363-404

[9] C. Voisin Green's generic syzygy conjecture for curves of even genus lying on a K3 surface, J. European Math. Soc., Volume 4 (2002), pp. 363-404

[10] C. Voisin, Green's canonical syzygy conjecture for generic curves of odd genus, Preprint, | arXiv

  • Andrei Bud A Hurwitz divisor on the moduli of Prym curves, Geometriae Dedicata, Volume 216 (2022) no. 1, p. 31 (Id/No 6) | DOI:10.1007/s10711-021-00663-6 | Zbl:1482.14033
  • Daniele Agostini Asymptotic Syzygies and Higher Order Embeddings, International Mathematics Research Notices, Volume 2022 (2022) no. 4, p. 2934 | DOI:10.1093/imrn/rnaa208
  • Gavril Farkas; Michael Kemeny Linear syzygies of curves with prescribed gonality, Advances in Mathematics, Volume 356 (2019), p. 39 (Id/No 106810) | DOI:10.1016/j.aim.2019.106810 | Zbl:1423.14213
  • Lawrence Ein; Robert Lazarsfeld The gonality conjecture on syzygies of algebraic curves of large degree, Publications Mathématiques, Volume 122 (2015), pp. 301-313 | DOI:10.1007/s10240-015-0072-2 | Zbl:1342.14070
  • Lawrence Ein; Robert Lazarsfeld Asymptotic syzygies of algebraic varieties, Inventiones Mathematicae, Volume 190 (2012) no. 3, pp. 603-646 | DOI:10.1007/s00222-012-0384-5 | Zbl:1262.13018
  • Marian Aprodu; Gavril Farkas Green's conjecture for curves on arbitrary K3 surfaces, Compositio Mathematica, Volume 147 (2011) no. 3, pp. 839-851 | DOI:10.1112/s0010437x10005099 | Zbl:1221.14039
  • M. Aprodu; G. Pacienza The Green Conjecture for Exceptional Curves on a K3 Surface, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnn043
  • Marian Aprodu; Jan Nagel Koszul cohomology and algebraic geometry, University Lecture Series, 52, Providence, RI: American Mathematical Society (AMS), 2010 | Zbl:1189.14001
  • Flaminio Flamini Pr-scrolls arising from Brill-Noether theory and K3-surfaces, Manuscripta Mathematica, Volume 132 (2010) no. 1-2, pp. 199-220 | DOI:10.1007/s00229-010-0343-7 | Zbl:1194.14058
  • Edoardo Ballico; Claudio Fontanari; Luca Tasin Koszul cohomology and singular curves, Rendiconti del Circolo Matemàtico di Palermo. Serie II, Volume 59 (2010) no. 1, pp. 121-125 | DOI:10.1007/s12215-010-0008-0 | Zbl:1191.14037
  • Flaminio Flamini; Andreas Leopold Knutsen; Gianluca Pacienza Singular curves on a K3 surface and linear series on their normalizations, International Journal of Mathematics, Volume 18 (2007) no. 6, pp. 671-693 | DOI:10.1142/s0129167x0700428x | Zbl:1121.14017
  • Montserrat Teixidor i Bigas Syzygies using vector bundles, Transactions of the American Mathematical Society, Volume 359 (2007) no. 2, pp. 897-908 | DOI:10.1090/s0002-9947-06-03921-3 | Zbl:1111.14024
  • Arnaud Beauville The generic Green conjecture (following C. Voisin)., Séminaire Bourbaki. Volume 2003/2004. Exposés 924–937, Paris: Société Mathématique de France, 2005, p. 1 | Zbl:1080.14041
  • Marian Aprodu Green-Lazarsfeld gonality conjecture for a generic curve of odd genus, IMRN. International Mathematics Research Notices, Volume 2004 (2004) no. 63, pp. 3409-3416 | DOI:10.1155/s107379280414035x | Zbl:1072.14036

Cité par 14 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: