Comptes Rendus
Partial Differential Equations
Properties of a single vortex solution in a rotating Bose Einstein condensate
[Propriétés d'une solution à un vortex pour un condensat de Bose Einstein en rotation]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 713-718.

In this Note, we study the properties of the line energy for a vortex γ in a Bose Einstein condensate rotating at velocity Ω. The global minimizer is either the vortex free solution or U vortices which exist only for Ω bigger than a critical value. For all values of Ω, we prove the existence of an S type vortex, which is a critical point of the line energy, observed in the experiments. We also prove uniqueness of the minimizer for almost every Ω and a monotonicity property of the curve γ with respect to Ω. The proofs rely on a related isoperimetric problem.

Dans cette Note, nous étudions les propriétés de l'énergie de ligne pour un vortex γ dans un condensat de Bose Einstein en rotation à la vitesse Ω. Nous prouvons que, pour tout Ω, il existe un vortex de type S, qui est un point critique de l'énergie, mais jamais un minimiseur. Le minimiseur global est soit la solution sans vortex soit un vortex en U, qui n'existe que pour Ω plus grand qu'une valeur critique. Nous prouvons également l'unicité des minimiseurs pour presque tout Ω et une propriété de monotonie des courbes γ par rapport à Ω. Les preuves reposent sur un problème de type isopérimétrique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00166-3

Amandine Aftalion 1 ; Robert L. Jerrard 2

1 Laboratoire Jacques-Louis Lions, Université Paris 6, 175, rue du Chevaleret, 75013 Paris, France
2 Department of Mathematics, 100 St George St, University of Toronto, Toronto M5S 3G3, Canada
@article{CRMATH_2003__336_9_713_0,
     author = {Amandine Aftalion and Robert L. Jerrard},
     title = {Properties of a single vortex solution in a rotating {Bose} {Einstein} condensate},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {713--718},
     publisher = {Elsevier},
     volume = {336},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00166-3},
     language = {en},
}
TY  - JOUR
AU  - Amandine Aftalion
AU  - Robert L. Jerrard
TI  - Properties of a single vortex solution in a rotating Bose Einstein condensate
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 713
EP  - 718
VL  - 336
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00166-3
LA  - en
ID  - CRMATH_2003__336_9_713_0
ER  - 
%0 Journal Article
%A Amandine Aftalion
%A Robert L. Jerrard
%T Properties of a single vortex solution in a rotating Bose Einstein condensate
%J Comptes Rendus. Mathématique
%D 2003
%P 713-718
%V 336
%N 9
%I Elsevier
%R 10.1016/S1631-073X(03)00166-3
%G en
%F CRMATH_2003__336_9_713_0
Amandine Aftalion; Robert L. Jerrard. Properties of a single vortex solution in a rotating Bose Einstein condensate. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 713-718. doi : 10.1016/S1631-073X(03)00166-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00166-3/

[1] J.R. Abo-Shaeer; C. Raman; J.M. Vogels; W. Ketterle Observation of vortex lattices in Bose–Einstein condensates, Science, Volume 292 (2001), p. 476

[2] A. Aftalion; R.L. Jerrard Shape of vortices for a rotating Bose–Einstein condensate, Phys. Rev. A, Volume 66 (2002), p. 023611

[3] A. Aftalion; T. Riviere Vortex energy and vortex bending for a rotating Bose–Einstein condensate, Phys. Rev. A, Volume 64 (2001), p. 043611

[4] E. Giusti Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984

[5] R.L. Jerrard, in preparation

[6] K. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000), pp. 806-809

[7] K.W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex lattices in a stirred Bose–Einstein condensate, J. Mod. Opt., Volume 47 (2000), p. 2715

[8] C. Raman; J.R. Abo-Shaeer; J.M. Vogels; K. Xu; W. Ketterle Vortex nucleation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 87 (2001), p. 210402

[9] P. Rosenbuch; V. Bretin; J. Dalibard Dynamics of a single vortex line in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 89 (2002), p. 200403

  • Carlos Román; Etienne Sandier; Sylvia Serfaty Bounded vorticity for the 3D Ginzburg-Landau model and an isoflux problem, Proceedings of the London Mathematical Society. Third Series, Volume 126 (2023) no. 3, pp. 1015-1062 | DOI:10.1112/plms.12505 | Zbl:1542.35368
  • Amandine Aftalion; Xavier Blanc Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 25 (2008) no. 2, pp. 339-355 | DOI:10.1016/j.anihpc.2006.11.011 | Zbl:1202.82010
  • Stan Alama; Lia Bronsard; J. Alberto Montero Vortices for a rotating toroidal Bose-Einstein condensate, Archive for Rational Mechanics and Analysis, Volume 187 (2008) no. 3, pp. 481-522 | DOI:10.1007/s00205-007-0077-1 | Zbl:1139.82002
  • Robert L. Jerrard Local minimizers with vortex filaments for a Gross-Pitaevsky functional, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 13 (2007) no. 1, pp. 35-71 | DOI:10.1051/cocv:2007004 | Zbl:1111.35077
  • Stan Alama; Lia Bronsard; J. Alberto Montero On the Ginzburg-Landau model of a superconducting ball in a uniform field, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 23 (2006) no. 2, pp. 237-267 | DOI:10.1016/j.anihpc.2005.03.004 | Zbl:1293.58006
  • Amandine Aftalion; Xavier Blanc Vortex Lattices in Rotating Bose–Einstein Condensates, SIAM Journal on Mathematical Analysis, Volume 38 (2006) no. 3, p. 874 | DOI:10.1137/050632889

Cité par 6 documents. Sources : Crossref, zbMATH

Commentaires - Politique