[Développement asymptotique de l'énergie des solutions des problèmes de perturbations singulières]
Nous étudions le problème suivant de perturbations singulières :
We consider the following singularly perturbed semilinear elliptic problem:
Accepté le :
Publié le :
Juncheng Wei 1 ; Matthias Winter 2
@article{CRMATH_2003__337_1_37_0, author = {Juncheng Wei and Matthias Winter}, title = {Higher order energy expansions for some singularly perturbed {Neumann} problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {37--42}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(03)00269-3}, language = {en}, }
Juncheng Wei; Matthias Winter. Higher order energy expansions for some singularly perturbed Neumann problems. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 37-42. doi : 10.1016/S1631-073X(03)00269-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00269-3/
[1] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., Volume 113 (1993) no. 2, pp. 318-350
[2] Critical points of a singular perturbation problem via reduced energy and local linking, J. Differential Equations, Volume 159 (1999), pp. 403-426
[3] Multi-spike stationary solutions of the Cahn–Hilliard equation in higher-dimension and instability, Adv. Differential Equations, Volume 4 (1999), pp. 1-69
[4] Equilibria with many nuclei for the Cahn–Hilliard equation, J. Differential Equations, Volume 4 (1999), pp. 1-69
[5] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math., Volume 189 (1999), pp. 241-262
[6] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J., Volume 48 (1999), pp. 883-898
[7] A theory of biological pattern formation, Kybernetik (Berlin), Volume 12 (1972), pp. 30-39
[8] Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations, Volume 11 (2000), pp. 143-175
[9] Multiple interior peak solutions for some singular perturbation problems, J. Differential Equations, Volume 158 (1999), pp. 1-27
[10] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré, Anal. Non Linéaire, Volume 17 (2000), pp. 47-82
[11] Multiple spike layers in the shadow Gierer–Meinhardt system: existence of equilibria and approximate invariant manifold, Duke Math. J., Volume 98 (1999), pp. 59-111
[12] On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations, Volume 23 (1998), pp. 487-545
[13] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., Volume 51 (1998), pp. 1445-1490
[14] Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, Volume 72 (1988), pp. 1-27
[15] On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., Volume 41 (1991), pp. 819-851
[16] Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., Volume 70 (1993), pp. 247-281
[17] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., Volume 48 (1995), pp. 731-768
[18] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., Volume 45 (1998), pp. 9-18
[19] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, Volume 129 (1996), pp. 315-333
[20] On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diffential Equations, Volume 134 (1997), pp. 104-133
[21] Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 15 (1998), pp. 459-492
[22] J. Wei, M. Winter, Higher order energy expansions and location of spikes for some singularly perturbed Neumann problems, Submitted
Cité par Sources :
Commentaires - Politique