[Comportement asymptotique des équations paraboliques doublement dégénérées]
We use mass transportation inequalities to study the asymptotic behavior for a class of doubly degenerate parabolic equations of the form
(1) |
Nous utilisons des inégalités de transport de masse pour étudier le comportement asymptotique des équations paraboliques doublement dégénérées de la forme (1), où
Accepté le :
Publié le :
Martial Agueh 1
@article{CRMATH_2003__337_5_331_0, author = {Martial Agueh}, title = {Asymptotic behavior for doubly degenerate parabolic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {331--336}, publisher = {Elsevier}, volume = {337}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00352-2}, language = {en}, }
Martial Agueh. Asymptotic behavior for doubly degenerate parabolic equations. Comptes Rendus. Mathématique, Volume 337 (2003) no. 5, pp. 331-336. doi : 10.1016/S1631-073X(03)00352-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00352-2/
[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Preprint, 2002
[2] M. Agueh, N. Ghoussoub, X. Kang, Geometric inequalities via a general comparison principle for interacting gases, GAFA (2003), in press
[3] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001) no. 1, pp. 1-82
[4] D. Cordero-Erausquin, W. Gangbo, C. Houdré, Inequalities for generalized entropy and optimal transportation, in: Proceedings of the Workshop: Mass Transportation Methods in Kinetic Theory and Hydrodynamics, in press
[5] Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 5, pp. 365-370
[6] Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 339-354
[7] The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174
[8] Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400
- Functional inequalities and applications to doubly nonlinear diffusion equations, Advances in Calculus of Variations, Volume 17 (2024) no. 2, pp. 467-485 | DOI:10.1515/acv-2022-0021 | Zbl:1539.35132
- An invariance principle for gradient flows in the space of probability measures, Journal of Differential Equations, Volume 345 (2023), pp. 233-284 | DOI:10.1016/j.jde.2022.11.028 | Zbl:1511.35030
- A new minimizing-movements scheme for curves of maximal slope, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 28 (2022), p. 29 (Id/No 59) | DOI:10.1051/cocv/2022028 | Zbl:7574255
- The Cauchy problem for the fast
-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 163 (2022), pp. 83-131 | DOI:10.1016/j.matpur.2022.05.002 | Zbl:1492.35035 - Existence of positive solutions and asymptotic behavior for evolutionary
-Laplacian equations, Discrete Dynamics in Nature and Society, Volume 2020 (2020), p. 23 (Id/No 9756162) | DOI:10.1155/2020/9756162 | Zbl:1459.35263 - Kurdyka-Łojasiewicz-Simon inequality for gradient flows in metric spaces, Transactions of the American Mathematical Society, Volume 372 (2019) no. 7, pp. 4917-4976 | DOI:10.1090/tran/7801 | Zbl:1425.49023
- The Fisher-KPP problem with doubly nonlinear diffusion, Journal of Differential Equations, Volume 263 (2017) no. 11, pp. 7647-7708 | DOI:10.1016/j.jde.2017.08.025 | Zbl:1386.35197
- Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Memoirs of the American Mathematical Society, 993, Providence, RI: American Mathematical Society (AMS), 2011 | DOI:10.1090/s0065-9266-2010-00610-0 | Zbl:1221.53001
- Global attractors for gradient flows in metric spaces, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 95 (2011) no. 2, pp. 205-244 | DOI:10.1016/j.matpur.2010.10.011 | Zbl:1215.35036
- Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime, Journal of Evolution Equations, Volume 10 (2010) no. 1, pp. 59-84 | DOI:10.1007/s00028-009-0040-8 | Zbl:1239.35063
- Rates of decay to equilibria for
-Laplacian type equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 7, pp. 1909-1927 | DOI:10.1016/j.na.2007.01.043 | Zbl:1185.35017 - Gradient Flows of Probability Measures, Volume 3 (2007), p. 1 | DOI:10.1016/s1874-5717(07)80004-1
- Contractions in the 2-Wasserstein length space and thermalization of granular media, Archive for Rational Mechanics and Analysis, Volume 179 (2006) no. 2, pp. 217-263 | DOI:10.1007/s00205-005-0386-1 | Zbl:1082.76105
- Large-time asymptotics for nonlinear diffusions: the initial-boundary value problem., Journal of Mathematical Physics, Volume 46 (2005) no. 2, p. 023502 | DOI:10.1063/1.1828587 | Zbl:1076.35057
Cité par 14 documents. Sources : Crossref, zbMATH
Commentaires - Politique