[Comportement asymptotique des équations paraboliques doublement dégénérées]
Nous utilisons des inégalités de transport de masse pour étudier le comportement asymptotique des équations paraboliques doublement dégénérées de la forme (1), où
We use mass transportation inequalities to study the asymptotic behavior for a class of doubly degenerate parabolic equations of the form
(1) |
Accepté le :
Publié le :
Martial Agueh 1
@article{CRMATH_2003__337_5_331_0, author = {Martial Agueh}, title = {Asymptotic behavior for doubly degenerate parabolic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {331--336}, publisher = {Elsevier}, volume = {337}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00352-2}, language = {en}, }
Martial Agueh. Asymptotic behavior for doubly degenerate parabolic equations. Comptes Rendus. Mathématique, Volume 337 (2003) no. 5, pp. 331-336. doi : 10.1016/S1631-073X(03)00352-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00352-2/
[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Preprint, 2002
[2] M. Agueh, N. Ghoussoub, X. Kang, Geometric inequalities via a general comparison principle for interacting gases, GAFA (2003), in press
[3] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001) no. 1, pp. 1-82
[4] D. Cordero-Erausquin, W. Gangbo, C. Houdré, Inequalities for generalized entropy and optimal transportation, in: Proceedings of the Workshop: Mass Transportation Methods in Kinetic Theory and Hydrodynamics, in press
[5] Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 5, pp. 365-370
[6] Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 339-354
[7] The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174
[8] Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400
Cité par Sources :
Commentaires - Politique