Comptes Rendus
Probability Theory/Ordinary Differential Equations
Asymptotic behavior for doubly degenerate parabolic equations
[Comportement asymptotique des équations paraboliques doublement dégénérées]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 5, pp. 331-336.

We use mass transportation inequalities to study the asymptotic behavior for a class of doubly degenerate parabolic equations of the form

ρt=divρc*F'(ρ)+Vin(0,)×Ω,andρ(t=0)=ρ0in{0}×Ω,(1)
where Ω is n, or a bounded domain of n in which case ρc*[(F'(ρ)+V)]·ν=0 on (0,)×Ω. We investigate the case where the potential V is uniformly c-convex, and the degenerate case where V=0. In both cases, we establish an exponential decay in relative entropy and in the c-Wasserstein distance of solutions – or self-similar solutions – of (1) to equilibrium, and we give the explicit rates of convergence. In particular, we generalize to all p>1, the HWI inequalities obtained by Otto and Villani (J. Funct. Anal. 173 (2) (2000) 361–400) when p=2. This class of PDEs includes the Fokker–Planck, the porous medium, fast diffusion and the parabolic p-Laplacian equations.

Nous utilisons des inégalités de transport de masse pour étudier le comportement asymptotique des équations paraboliques doublement dégénérées de la forme (1), où Ω est soit n, ou un domaine borné de n auquel cas ρc*[(F'(ρ)+V)]·ν=0 sur (0,)×Ω. Nous examinons le cas où le potentiel V est uniformément c-convexe, et le cas dégénéré où V=0. Dans ces deux cas, nous montrons une décroissance exponentielle de la différence d'entropies et de la distance de Wasserstein – suivant le coût c – des solutions de l'équation et de sa solution stationnaire, et nous précisons les taux de convergence. En particulier, nous généralisons à tous les p>1 les inégalités HWI obtenues dans Otto et Villani (J. Funct. Anal. 173 (2) (2000) 361–400) lorsque p=2. Cette classe d'équations contient les équations de Fokker–Planck, des milieux poreux et du p-Laplacien.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00352-2

Martial Agueh 1

1 Department of Mathematics, The University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada
@article{CRMATH_2003__337_5_331_0,
     author = {Martial Agueh},
     title = {Asymptotic behavior for doubly degenerate parabolic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {331--336},
     publisher = {Elsevier},
     volume = {337},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00352-2},
     language = {en},
}
TY  - JOUR
AU  - Martial Agueh
TI  - Asymptotic behavior for doubly degenerate parabolic equations
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 331
EP  - 336
VL  - 337
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00352-2
LA  - en
ID  - CRMATH_2003__337_5_331_0
ER  - 
%0 Journal Article
%A Martial Agueh
%T Asymptotic behavior for doubly degenerate parabolic equations
%J Comptes Rendus. Mathématique
%D 2003
%P 331-336
%V 337
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00352-2
%G en
%F CRMATH_2003__337_5_331_0
Martial Agueh. Asymptotic behavior for doubly degenerate parabolic equations. Comptes Rendus. Mathématique, Volume 337 (2003) no. 5, pp. 331-336. doi : 10.1016/S1631-073X(03)00352-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00352-2/

[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Preprint, 2002

[2] M. Agueh, N. Ghoussoub, X. Kang, Geometric inequalities via a general comparison principle for interacting gases, GAFA (2003), in press

[3] J.A. Carrillo; A. Jüngel; P.A. Markowich; G. Toscani; A. Unterreiter Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001) no. 1, pp. 1-82

[4] D. Cordero-Erausquin, W. Gangbo, C. Houdré, Inequalities for generalized entropy and optimal transportation, in: Proceedings of the Workshop: Mass Transportation Methods in Kinetic Theory and Hydrodynamics, in press

[5] M. Del Pino; J. Dolbeault Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 5, pp. 365-370

[6] S. Kamin; J.L. Vázquez Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 339-354

[7] F. Otto The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174

[8] F. Otto; C. Villani Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400

  • Iwona Chlebicka; Nikita Simonov Functional inequalities and applications to doubly nonlinear diffusion equations, Advances in Calculus of Variations, Volume 17 (2024) no. 2, pp. 467-485 | DOI:10.1515/acv-2022-0021 | Zbl:1539.35132
  • José A. Carrillo; Rishabh S. Gvalani; Jeremy S.-H. Wu An invariance principle for gradient flows in the space of probability measures, Journal of Differential Equations, Volume 345 (2023), pp. 233-284 | DOI:10.1016/j.jde.2022.11.028 | Zbl:1511.35030
  • Ulisse Stefanelli A new minimizing-movements scheme for curves of maximal slope, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 28 (2022), p. 29 (Id/No 59) | DOI:10.1051/cocv/2022028 | Zbl:7574255
  • Matteo Bonforte; Nikita Simonov; Diana Stan The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 163 (2022), pp. 83-131 | DOI:10.1016/j.matpur.2022.05.002 | Zbl:1492.35035
  • Aboubacar Marcos; Ambroise Soglo Existence of positive solutions and asymptotic behavior for evolutionary q(x)-Laplacian equations, Discrete Dynamics in Nature and Society, Volume 2020 (2020), p. 23 (Id/No 9756162) | DOI:10.1155/2020/9756162 | Zbl:1459.35263
  • Daniel Hauer; José M. Mazón Kurdyka-Łojasiewicz-Simon inequality for gradient flows in metric spaces, Transactions of the American Mathematical Society, Volume 372 (2019) no. 7, pp. 4917-4976 | DOI:10.1090/tran/7801 | Zbl:1425.49023
  • Alessandro Audrito; Juan Luis Vázquez The Fisher-KPP problem with doubly nonlinear diffusion, Journal of Differential Equations, Volume 263 (2017) no. 11, pp. 7647-7708 | DOI:10.1016/j.jde.2017.08.025 | Zbl:1386.35197
  • Wilfrid Gangbo; Hwa Kil Kim; Tommaso Pacini Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Memoirs of the American Mathematical Society, 993, Providence, RI: American Mathematical Society (AMS), 2011 | DOI:10.1090/s0065-9266-2010-00610-0 | Zbl:1221.53001
  • Riccarda Rossi; Antonio Segatti; Ulisse Stefanelli Global attractors for gradient flows in metric spaces, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 95 (2011) no. 2, pp. 205-244 | DOI:10.1016/j.matpur.2010.10.011 | Zbl:1215.35036
  • Martial Agueh; Adrien Blanchet; José A. Carrillo Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime, Journal of Evolution Equations, Volume 10 (2010) no. 1, pp. 59-84 | DOI:10.1007/s00028-009-0040-8 | Zbl:1239.35063
  • Martial Agueh Rates of decay to equilibria for p-Laplacian type equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 7, pp. 1909-1927 | DOI:10.1016/j.na.2007.01.043 | Zbl:1185.35017
  • Luigi Ambrosio; Giuseppe Savaré Gradient Flows of Probability Measures, Volume 3 (2007), p. 1 | DOI:10.1016/s1874-5717(07)80004-1
  • José A. Carrillo; Robert J. McCann; Cédric Villani Contractions in the 2-Wasserstein length space and thermalization of granular media, Archive for Rational Mechanics and Analysis, Volume 179 (2006) no. 2, pp. 217-263 | DOI:10.1007/s00205-005-0386-1 | Zbl:1082.76105
  • F. Salvarani; G. Toscani Large-time asymptotics for nonlinear diffusions: the initial-boundary value problem., Journal of Mathematical Physics, Volume 46 (2005) no. 2, p. 023502 | DOI:10.1063/1.1828587 | Zbl:1076.35057

Cité par 14 documents. Sources : Crossref, zbMATH

Commentaires - Politique