Comptes Rendus
Number Theory
Estimation of certain exponential sums arising in complexity theory
[Estimations de certaines sommes exponentielles en theorie de complexité]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 627-631.

On démontre que la corrélation sur {0,1}n de la fonction parité et un polynôme p(x1,,xn)Z[X1,,Xn](modq), q un entier impair donné et p(X) de degré d arbitraire mais fixé, est exponentiellement petite en n pour n. On obient une application en théorie de complexité où la question trouve son origine.

It is shown that the correlation on {0,1}n between parity and a polynomial p(x1,,xn)Z[X1,,Xn](modq), q a fixed odd number and p(X) of degree d arbitrary but fixed, is exponentially small in n as n. An application to circuit complexity, from where the problem originates, is given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.03.008

Jean Bourgain 1

1 Institute for Advanced Study, Princeton, NJ 08540, USA
@article{CRMATH_2005__340_9_627_0,
     author = {Jean Bourgain},
     title = {Estimation of certain exponential sums arising in complexity theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {627--631},
     publisher = {Elsevier},
     volume = {340},
     number = {9},
     year = {2005},
     doi = {10.1016/j.crma.2005.03.008},
     language = {en},
}
TY  - JOUR
AU  - Jean Bourgain
TI  - Estimation of certain exponential sums arising in complexity theory
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 627
EP  - 631
VL  - 340
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2005.03.008
LA  - en
ID  - CRMATH_2005__340_9_627_0
ER  - 
%0 Journal Article
%A Jean Bourgain
%T Estimation of certain exponential sums arising in complexity theory
%J Comptes Rendus. Mathématique
%D 2005
%P 627-631
%V 340
%N 9
%I Elsevier
%R 10.1016/j.crma.2005.03.008
%G en
%F CRMATH_2005__340_9_627_0
Jean Bourgain. Estimation of certain exponential sums arising in complexity theory. Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 627-631. doi : 10.1016/j.crma.2005.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.008/

[1] N. Alon; R. Beigel Lower bounds for approximation by low degree polynomials over Zm, Annual IEEE Conference on Computational Complexity (formerly Annual Conference on Structure in Complexity Theory), vol. 16, 2001

[2] J.-Y. Cai; F. Green; T. Thierauf On the correlation of symmetric functions, Math. Systems Theory, Volume 29 (1996) no. 3, pp. 245-258

[3] E. Dueñez, S. Miller, A. Roy, H. Straubing Incomplete quadratic exponential sums in several variables, preprint

[4] F. Green The correlation between parity and quadratic polynomials mod3, J. Comput. System Sci., Volume 69 (2004) no. 1, pp. 28-44

[5] A. Hajnal; W. Maass; P. Pudlák; M. Szegedy; G. Turán Threshold circuits of bounded depth, J. Comput. System Sci., Volume 46 (1993) no. 2, pp. 129-154

Cité par Sources :

Commentaires - Politique