Nous établissons une généralisation de la dualité de Casselman aux espaces symétriques réductifs p-adiques et nous étudions le comportement asymptotique de certains coefficients. Nous prouvons aussi un anologue d'un lemme de Langlands grâce auquel nous obtenons un résultat de disjonction de certaines parties de la décomposition de Cartan de l'espace symétrique.
We establish a generalization of Casselman's pairing to p-adic reductive symmetric spaces and we study the asymptotic behaviour of certain coefficients. Also an analogous of a Langlands lemma is proved and used to get a disjonction result for the Cartan decomposition of the symmetric space.
Accepté le :
Publié le :
Nathalie Lagier 1
@article{CRMATH_2007__344_7_421_0, author = {Nathalie Lagier}, title = {Asymptotiques de fonctions sur un espace sym\'etrique r\'eductif \protect\emph{p}-adique}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--424}, publisher = {Elsevier}, volume = {344}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.02.002}, language = {fr}, }
Nathalie Lagier. Asymptotiques de fonctions sur un espace symétrique réductif p-adique. Comptes Rendus. Mathématique, Volume 344 (2007) no. 7, pp. 421-424. doi : 10.1016/j.crma.2007.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.02.002/
[1] P. Blanc, P. Delorme, Vecteurs distributions H-invariants de représentations induites, pour un espace symétrique réductif p-adique , A paraitre aux Ann. Inst. Fourier
[2] Polar decomposition for p-adic symmetric spaces (Preprint arxiv :) | arXiv
[3] Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, University of Tokyo Press, Princeton, NJ, Tokyo, 1980
[4] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, Non publié
[5] An analogue of the Cartan decomposition for p-adic reductive symmetric spaces (Preprint, arxiv:) | arXiv
[6] Boundedness of certain unitarizable Harish-Chandra modules, Representations of Lie Groups Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 651-660
[7] Harmonic analysis on real reductive groups. III. The Maass–Selberg relations and the Plancherel formula, Ann. of Math. (2), Volume 104 (1976), pp. 117-201
[8] A class of parabolic k-subgroups associated with symmetric k-varieties, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 4669-4691
[9] On rationality properties of involutions of reductive groups, Adv. Math., Volume 99 (1993), pp. 26-96
[10] Spherical functions and local densities on Hermitian forms, J. Math. Soc. Japan, Volume 51 (1999), pp. 553-581
[11] Spherical functions and local densities of alternating forms, Amer. J. Math., Volume 110 (1988), pp. 473-512
[12] Relative spherical functions on ℘-adic symmetric spaces (three cases), Pacific J. Math., Volume 215 (2004), pp. 97-149
[13] Harmonic Analysis on Symmetric Spaces – General Plancherel Theorems, Lie Theory, Progress in Mathematics, vol. 229, Birkhäuser Boston, Boston, MA, 2005
[14] La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra), J. Inst. Math. Jussieu, Volume 2 (2003), pp. 235-333
Cité par Sources :
Commentaires - Politique