Comptes Rendus
Analyse complexe/Géométrie
Régularité au bord des applications pseudo-holomorphes propres
Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 421-424.

Nous montrons que les applications pseudo-holomorphes propres entre deux régions strictement pseudoconvexes se prolongent au bord. Le point essentiel de la démonstration est que le jacobien d'une telle application ne s'annule pas près du bord. Nous prouvons également que la régularité du prolongement dépend de la régularité des structures presque complexes, et nous obtenons des estimations explicites des normes hölderiennes. En corollaire, nous donnons dans le cas lisse une condition nécessaire et suffisante sur la structure presque complexe de l'espace d'arrivée pour que les applications pseudo-holomorphes propres se prolongent de façon lisse.

We prove that proper pseudo-holomorphic maps between strictly pseudoconvex regions in almost complex manifolds extend to the boundary. The key point is that the Jacobian of such a map is far from zero near the boundary, and the proof is mainly based on an almost complex analogue of the scaling method. We also establish the link between the regularity of the extension and the regularity of the almost complex structures, and we determine explicit estimates for the Hölderian norms. As a corollary, we get in the smooth case a necessary and sufficient condition on the almost complex structure of the target's space for the smooth extension of proper pseudo-holomorphic maps.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.09.013

Léa Blanc-Centi 1

1 Universités de Marseille (Université de Provence), L.A.T.P., 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2007__345_8_421_0,
     author = {L\'ea Blanc-Centi},
     title = {R\'egularit\'e au bord des applications pseudo-holomorphes propres},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {421--424},
     publisher = {Elsevier},
     volume = {345},
     number = {8},
     year = {2007},
     doi = {10.1016/j.crma.2007.09.013},
     language = {fr},
}
TY  - JOUR
AU  - Léa Blanc-Centi
TI  - Régularité au bord des applications pseudo-holomorphes propres
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 421
EP  - 424
VL  - 345
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2007.09.013
LA  - fr
ID  - CRMATH_2007__345_8_421_0
ER  - 
%0 Journal Article
%A Léa Blanc-Centi
%T Régularité au bord des applications pseudo-holomorphes propres
%J Comptes Rendus. Mathématique
%D 2007
%P 421-424
%V 345
%N 8
%I Elsevier
%R 10.1016/j.crma.2007.09.013
%G fr
%F CRMATH_2007__345_8_421_0
Léa Blanc-Centi. Régularité au bord des applications pseudo-holomorphes propres. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 421-424. doi : 10.1016/j.crma.2007.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.013/

[1] L. Blanc-Centi, Proper pseudo-holomorphic maps between strictly pseudoconvex regions, preprint de l'Université de Provence, LATP, 2006, | arXiv

[2] E.M. Chirka Regularity of the boundaries of analytic sets, Mat. Sb., Volume 45 (1983), pp. 291-336

[3] E. Chirka; C. Coupet; A. Sukhov On boundary regularity of analytic discs, Michigan Math. J., Volume 46 (1999), pp. 271-279

[4] B. Coupet; H. Gaussier; A. Sukhov Fefferman's mapping theorem on almost complex manifolds in complex dimension two, Math. Z., Volume 250 (2005) no. 1, pp. 59-90

[5] F. Forstnerič Proper holomorphic mappings: a survey, Stockholm, 1987/88 (J.E. Fornæss, ed.) (Math. Notes), Volume vol. 38, Princeton Univ. Press, Princeton, NJ (1993), pp. 297-363

[6] H. Gaussier; A. Sukhov On the geometry of model almost complex manifolds with boundary, Math. Z., Volume 254 (2006) no. 3, pp. 567-589

[7] L. Lempert La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Math. Soc. France, Volume 109 (1981), pp. 427-474

[8] S. Pinchuk Holomorphic inequivalence of some classes of domain in Cn, Mat. Sb., Volume 111 (1980) no. 153, pp. 67-94 (English transl. in Math. USSR-Sb., 39, 1980, pp. 61-86)

[9] S. Pinchuk The scaling method and holomorphic mappings, Santa Cruz, CA, 1989 (Proc. Sympos. Pure Math.), Volume vol. 52, Amer. Math. Soc., Providence, RI (1991), pp. 151-161

[10] A. Tumanov Extremal discs and the regularity of CR mappings in higher codimension, Amer. J. Math., Volume 123 (2001) no. 3, pp. 445-473

Cité par Sources :

Commentaires - Politique