[Unicité du plongement de mesures de probabilité gaussiennes dans un semigroupe de convolution continu sur des groupes de Lie nilpotents et simplement connexes]
Let
Soient
Accepté le :
Publié le :
Daniel Neuenschwander 1, 2, 3
@article{CRMATH_2008__346_15-16_887_0, author = {Daniel Neuenschwander}, title = {Uniqueness of embedding of {Gaussian} probability measures into a continuous convolution semigroup on simply connected nilpotent {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {887--892}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2007.10.038}, language = {en}, }
TY - JOUR AU - Daniel Neuenschwander TI - Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups JO - Comptes Rendus. Mathématique PY - 2008 SP - 887 EP - 892 VL - 346 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2007.10.038 LA - en ID - CRMATH_2008__346_15-16_887_0 ER -
%0 Journal Article %A Daniel Neuenschwander %T Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups %J Comptes Rendus. Mathématique %D 2008 %P 887-892 %V 346 %N 15-16 %I Elsevier %R 10.1016/j.crma.2007.10.038 %G en %F CRMATH_2008__346_15-16_887_0
Daniel Neuenschwander. Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 887-892. doi : 10.1016/j.crma.2007.10.038. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.038/
[1] Unicité du plongement d'une mesure de probabilité dans un semi-groupe de convolution gaussien. Cas non-abélien, Math. Z., Volume 188 (1985), pp. 411-417
[2] Ueber die Charakterisierung unendlich teilbarer Wahrscheinlichkeitsverteilungen, J. Reine Angew. Math., Volume 201 (1959), pp. 150-156
[3] Infinitely divisible distributions on connected nilpotent Lie groups, J. London Math. Soc. (2), Volume 7 (1974), pp. 584-588
[4] Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups, Probab. Theory Rel. Fields, Volume 109 (1997), pp. 101-127
[5] Cramér theorem on symmetric spaces of noncompact type, J. Theoret. Probab., Volume 7 (1994) no. 3, pp. 609-613
[6] Ueber Wurzeln und Logarithmen beschränkter Masse, Z. Wahrsch. Verw. Geb., Volume 20 (1971), pp. 259-270
[7] The domains of partial attraction of probabilities on groups and on vector spaces, J. Theoret. Probab., Volume 6 (1993) no. 1, pp. 175-186
[8] Stable Probability Measures on Euclidean Spaces and Locally Compact Groups. Structural Properties and Limit Theorems, Kluwer Academic Publishers, Dordrecht, 2001
[9] Probability Measures on Locally Compact Groups, Springer, Berlin, 1977
[10] Probabilities on the Heisenberg Group: Limit Theorems and Brownian Motion, Lecture Notes in Mathematics, vol. 1630, Springer, Berlin, 1996
[11] On the uniqueness problem for continuous convolution semigroups of probability measures on simply connected nilpotent Lie groups, Publ. Math. Debrecen, Volume 53 (1998) no. 3–4, pp. 415-422
[12] s-stable semigroups on simply connected step 2-nilpotent Lie groups, AMS special session, Gainesville, FL, USA, March 12–13, 1999 (G. Budzban et al., eds.) (Contemporary Mathematics), Volume vol. 261, Amer. Math. Soc., Providence, RI (2000), pp. 59-70
[13] Limit theorems for probability measures on simply connected nilpotent Lie groups, J. Theoret. Probab., Volume 4 (1991) no. 2, pp. 261-284
[14] Uniqueness of embedding into a Gaussian semigroup on a nilpotent Lie group, Arch. Math. (Basel), Volume 62 (1994), pp. 282-288
[15] Une loi du logarithme itéré pour certaines intégrales stochastiques, C. R. Acad. Sci. Paris, Sér. I, Volume 292 (1981), pp. 295-298
[16] Lie Algebras and Lie Groups, Benjamin, New York, 1965
[17] Ueber die Erzeugung von Faltungshalbgruppen auf beliebigen lokalkompakten Gruppen, Math. Z., Volume 131 (1973), pp. 313-333
[18] Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Adv. Math., Volume 39 (1981), pp. 111-154
Cité par Sources :
Commentaires - Politique