Comptes Rendus
Calculus of Variations
Hölder continuity of solutions to a basic problem in the calculus of variations
[Continuité hölderienne des solutions d'un problème de calcul des variations]
Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1301-1305.

Pour un problème de calcul des variations multidimensionnel, où le lagrangien convexe ne dépend que du gradient, on montre que la continuité de la fonction ϕ définissant la condition de Dirichlet au bord implique la continuité des minimiseurs sur l'adhérence du domaine. Lorsque ϕ est lipschitzienne, alors les minimiseurs sont hölderiens.

For the basic problem in the calculus of variations where the Lagrangian is convex and depends only on the gradient, we establish the continuity of the solutions when the Dirichlet boundary condition is defined by a continuous function ϕ. When ϕ is Lipschitz continuous, then the solutions are Hölder continuous.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.10.001

Pierre Bousquet 1 ; Carlo Mariconda 2 ; Giulia Treu 2

1 UMPA, ENS Lyon, 46 Allée d'Italie, 69007 Lyon, France
2 Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova, Italy
@article{CRMATH_2008__346_23-24_1301_0,
     author = {Pierre Bousquet and Carlo Mariconda and Giulia Treu},
     title = {H\"older continuity of solutions to a basic problem in the calculus of variations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1301--1305},
     publisher = {Elsevier},
     volume = {346},
     number = {23-24},
     year = {2008},
     doi = {10.1016/j.crma.2008.10.001},
     language = {en},
}
TY  - JOUR
AU  - Pierre Bousquet
AU  - Carlo Mariconda
AU  - Giulia Treu
TI  - Hölder continuity of solutions to a basic problem in the calculus of variations
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1301
EP  - 1305
VL  - 346
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2008.10.001
LA  - en
ID  - CRMATH_2008__346_23-24_1301_0
ER  - 
%0 Journal Article
%A Pierre Bousquet
%A Carlo Mariconda
%A Giulia Treu
%T Hölder continuity of solutions to a basic problem in the calculus of variations
%J Comptes Rendus. Mathématique
%D 2008
%P 1301-1305
%V 346
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2008.10.001
%G en
%F CRMATH_2008__346_23-24_1301_0
Pierre Bousquet; Carlo Mariconda; Giulia Treu. Hölder continuity of solutions to a basic problem in the calculus of variations. Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1301-1305. doi : 10.1016/j.crma.2008.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.10.001/

[1] P. Bousquet On the lower bounded slope condition, J. Convex Anal., Volume 14 (2007) no. 1, pp. 119-136

[2] P. Bousquet, Boundary continuity of solutions to a basic problem in the calculus of variations, submitted for publication

[3] A. Cellina On the bounded slope condition and the validity of the Euler Lagrange equation, SIAM J. Control Optim., Volume 40 (2001/2002), pp. 1270-1279

[4] A. Cellina Comparison results and estimates on the gradient without strict convexity, SIAM J. Control Optim., Volume 46 (2007), pp. 738-749

[5] F.H. Clarke Continuity of solutions to a basic problem in the calculus of variations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 4 (2005), pp. 511-530

[6] M. Giaquinta Growth conditions and regularity, a counterexample, Manuscripta Math., Volume 59 (1987), pp. 245-248

[7] M. Giaquinta; E. Giusti On the regularity of the minima of variational integrals, Acta Math., Volume 148 (1982), pp. 31-46

[8] E. Giusti Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003

[9] P. Hartman On the bounded slope condition, Pacific J. Math., Volume 18 (1966) no. 3, pp. 495-511

[10] P. Hartman Convex sets and the bounded slope condition, Pacific J. Math., Volume 25 (1968), pp. 511-522

[11] I.N. Krol'; V.G. Maz'ya The absence of the continuity and Hölder continuity of the solutions of quasilinear elliptic equations near a nonregular boundary, Trans. Moscow Math. Soc., Volume 26 (1974), pp. 73-93

[12] P. Marcellini Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl., Volume 90 (1996) no. 1, pp. 161-181

[13] C. Mariconda; G. Treu Gradient maximum principle for minima, J. Optim. Theory Appl., Volume 112 (2002), pp. 167-186

[14] C. Mariconda; G. Treu Existence and Lipschitz regularity for minima, Proc. Amer. Math. Soc., Volume 130 (2002) no. 2, pp. 395-404

[15] C. Mariconda; G. Treu Lipschitz regularity for minima without strict convexity of the Lagrangian, J. Differential Equation, Volume 243 (2007), pp. 388-413

[16] C. Mariconda, G. Treu, Local Lipschitz regularity of minima for a scalar problem of the calculus of variations, Commun. Contemp. Math., in press

[17] C. Mariconda, G. Treu, Hölder regularity for a classical problem of the calculus of variations, submitted for publication

[18] J. Malý; W. Ziemer Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, vol. 51, Amer. Math. Soc., 1997

[19] M. Miranda Un teorema di esistenza e unicità per il problema dell' area minima in n variabili, Ann. Scuola Norm. Sup. Pisa (3), Volume 19 (1965), pp. 233-249

[20] S. Solimini Simplified excision techniques for free discontinuity problems in several variables, J. Funct. Anal., Volume 151 (1997), pp. 1-34

Cité par Sources :

Commentaires - Politique