[Une extension galoisienne non résoluble de ramifiée seulement en 2]
Dans cette Note, nous démontrons l'existence d'une extension galoisienne non résoluble de ramifiée seulement en 2. L'extension K que nous construisons est de degré et de discriminant normalisé , et est totalement complexe.
In this Note, we show the existence of a non-solvable Galois extension of which is unramified outside 2. The extension K we construct has degree , it has root discriminant , and is totally complex.
Accepté le :
Publié le :
Lassina Dembélé 1
@article{CRMATH_2009__347_3-4_111_0, author = {Lassina Demb\'el\'e}, title = {A non-solvable {Galois} extension of $ \mathbb{Q}$ ramified at 2 only}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--116}, publisher = {Elsevier}, volume = {347}, number = {3-4}, year = {2009}, doi = {10.1016/j.crma.2008.12.004}, language = {en}, }
Lassina Dembélé. A non-solvable Galois extension of $ \mathbb{Q}$ ramified at 2 only. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 111-116. doi : 10.1016/j.crma.2008.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.004/
[1] The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3–4, pp. 235-265
[2] The nonexistence of certain Galois extensions unramified outside 5, J. Number Theory, Volume 75 (1999), pp. 47-52
[3] On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939
[4] Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Ecole Norm. Sup., Volume 19 (1986), pp. 409-468
[5] F. Diaz y Diaz, Tables minorant la racine n-ième du discriminant d'un corps de degré n, Publications Mathématiques d'Orsay 80, Université de Paris-Sud, Département de Mathématique, Orsay, 1980, 59 pp
[6] Modular forms (mod p) and Galois representations, Int. Math. Res. Notices, Volume 16 (1998), pp. 865-875
[7] Algebraic modular forms, Israel J. Math., Volume 113 (1999), pp. 61-93
[8] Tamely ramified towers and discriminant bounds for number fields. II, J. Symbolic Comput., Volume 33 (2002) no. 4, pp. 415-423
[9] Tamely ramified towers and discriminant bounds for number fields, Compositio Math., Volume 128 (2001) no. 1, pp. 35-53
[10] On Galois representations associated to Hilbert modular forms of low weight, J. Reine Angew. Math., Volume 491 (1997), pp. 199-216
[11] C. Khare, J.-P. Wintenberger, On Serre's conjecture for 2-dimensional mod p representations of the absolute Galois group of the rationals, Ann. of Math., in press
[12] Hecke algebras and automorphic forms, Compositio Math., Volume 130 (2002) no. 1, pp. 21-48
[13] Hilbert modular forms of weight one and Galois representations, Progr. Math., Volume 46 (1984), pp. 333-353
[14] On Artin L-functions associated to Hilbert modular forms of weight 1, Invent. Math., Volume 74 (1983), pp. 1-42
[15] Sur les représentations modulaires de degré 2 de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230
[16] Corps locaux, Publications de l'Université de Nancago, vol. VIII, Hermann, Paris, 1968, p. 245
[17] Congruences et formes modulaires [d'après H.P.F. Swinnerton-Dyer], Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Lecture Notes in Math., vol. 317, Springer, Berlin, 1973, pp. 319-338
[18] Oeuvres III, Springer-Verlag, 1986 (Note 229.2 on p. 710)
[19] Abelian l-Adic Representations and Elliptic Curves, Research Notes in Mathematics, vol. 7, A K Peters, Ltd., Wellesley, MA, 1997
[20] The non-existence of certain Galois extensions of unramified outside 2, Contemp. Math., Volume 174 (1994), pp. 153-156
[21] On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280
[22] On the meromorphic continuation of degree two L-functions, Doc. Math. Extra Vol. (2006), pp. 729-779
[23] On ordinary λ-adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573
Cité par Sources :
Commentaires - Politique