[Problèmes de valeurs propres dans les espaces d'Orlicz–Sobolev anisotropes]
On établit des conditions suffisantes pour l'existence des solutions pour une classe de problèmes non linéaires de valeurs propres avec des opérateurs différentiels non homogènes dans les espaces d'Orlicz–Sobolev.
We establish sufficient conditions for the existence of solutions to a class of nonlinear eigenvalue problems involving nonhomogeneous differential operators in Orlicz–Sobolev spaces.
Accepté le :
Publié le :
Mihai Mihăilescu 1, 2 ; Gheorghe Moroşanu 2 ; Vicenţiu Rădulescu 1, 3
@article{CRMATH_2009__347_9-10_521_0, author = {Mihai Mih\u{a}ilescu and Gheorghe Moro\c{s}anu and Vicen\c{t}iu R\u{a}dulescu}, title = {Eigenvalue problems in anisotropic {Orlicz{\textendash}Sobolev} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {521--526}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.023}, language = {en}, }
TY - JOUR AU - Mihai Mihăilescu AU - Gheorghe Moroşanu AU - Vicenţiu Rădulescu TI - Eigenvalue problems in anisotropic Orlicz–Sobolev spaces JO - Comptes Rendus. Mathématique PY - 2009 SP - 521 EP - 526 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.02.023 LA - en ID - CRMATH_2009__347_9-10_521_0 ER -
Mihai Mihăilescu; Gheorghe Moroşanu; Vicenţiu Rădulescu. Eigenvalue problems in anisotropic Orlicz–Sobolev spaces. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 521-526. doi : 10.1016/j.crma.2009.02.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.023/
[1] Sobolev Spaces, Academic Press, New York, 1975
[2] Mountain pass type solutions for quasilinear elliptic equations, Calc. Var., Volume 11 (2000), pp. 33-62
[3] Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces, Mediterr. J. Math., Volume 1 (2004), pp. 241-267
[4] Existence and nonexistence results for anisotropic quasilinear equations, Ann. Inst. H. Poincaré, Analyse Non Linéaire, Volume 21 (2004), pp. 715-734
[5] M. Mihăilescu, G. Moroşanu, V. Rădulescu, Eigenvalue problems for anisotropic elliptic equations: An Orlicz–Sobolev space setting, preprint
[6] Eigenvalue problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces, Analysis and Applications, Volume 6 (2008) no. 1, pp. 1-16
[7] Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces, Ann. Inst. Fourier, Volume 58 (2008) no. 6, pp. 2087-2111
[8] On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surv., Volume 16 (1961), pp. 55-104
[9] Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis, Volume 13 (1979), pp. 55-68
[10] Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis, Volume 15 (1981), pp. 127-140
[11] Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996
[12] Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., Volume 18 (1969), pp. 3-24
Cité par Sources :
Commentaires - Politique