[Fonctions hypergéométriques pour les corps de fonctions et transcendance]
Nous étudions les fonctions hypergéométriques pour
We study hypergeometric functions for
Accepté le :
Publié le :
Dinesh S. Thakur 1 ; Zhi-Ying Wen 2 ; Jia-Yan Yao 2 ; Liang Zhao 2
@article{CRMATH_2009__347_9-10_467_0, author = {Dinesh S. Thakur and Zhi-Ying Wen and Jia-Yan Yao and Liang Zhao}, title = {Hypergeometric functions for function fields and transcendence}, journal = {Comptes Rendus. Math\'ematique}, pages = {467--472}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.03.006}, language = {en}, }
TY - JOUR AU - Dinesh S. Thakur AU - Zhi-Ying Wen AU - Jia-Yan Yao AU - Liang Zhao TI - Hypergeometric functions for function fields and transcendence JO - Comptes Rendus. Mathématique PY - 2009 SP - 467 EP - 472 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.03.006 LA - en ID - CRMATH_2009__347_9-10_467_0 ER -
Dinesh S. Thakur; Zhi-Ying Wen; Jia-Yan Yao; Liang Zhao. Hypergeometric functions for function fields and transcendence. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 467-472. doi : 10.1016/j.crma.2009.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.006/
[1] Note sur un article de Sharif et Woodcock, Sém. de Théorie des Nombres de Bordeaux, Volume 1 (1989), pp. 163-187
[2] Transcendence of the Carlitz–Goss gamma function at rational arguments, J. Number Theory, Volume 60 (1996), pp. 318-328
[3] Determination of the algebraic relations among special Γ-values in positive characteristic, Ann. Math., Volume 160 (2004) no. 2, pp. 237-313
[4] C.-Y. Chang, M. Papanikolas, D. Thakur, J. Yu, Algebraic independence of arithmetic gamma values and Carlitz zeta values, (2008), submitted for publication
[5] L. Denis, Transcendance et dérivées de l'exponentielle de Carlitz, in: S. David (Ed.), Progr. Math., vol. 116, Séminaire de Théorie des Nombres (Paris, 1991–92), Birkhäuser, 1993, pp. 1–21
[6] Un critère de transcendance en caractéristique finie, J. Algebra, Volume 182 (1996), pp. 522-533
[7] Valeurs transcendantes des fonctions de Bessel–Carlitz, Ark. Mat., Volume 36 (1998), pp. 73-85
[8] Basic Structures of Function Field Arithmetic, Springer, 1998
[9] Algebraic elements in formal power series rings, Israel J. Math., Volume 63 (1988), pp. 281-288
[10] Some transcendental elements in positive characteristic, Sci. Asia, Volume 26 (2000), pp. 39-48
[11] Transcendence and the Carlitz–Goss gamma function, J. Number Theory, Volume 63 (1997), pp. 396-402
[12] Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., Volume 171 (2008), pp. 123-174
[13] Algebraic functions over a field of positive characteristic and Hadamard products, J. London Math. Soc., Volume 37 (1988), pp. 395-403
[14] Hypergeometric functions for function fields, Finite Fields Appl., Volume 1 (1995), pp. 219-231
[15] Transcendence of gamma values for
[16] An alternate approach to solitons for
[17] Hypergeometric functions for function fields II, J. Ramanujan Math. Soc., Volume 15 (2000), pp. 43-52
[18] Integrable systems and number theory in finite characteristic, Adv. Nonlinear Math. Sci. Physica D, Volume 152/153 (2001), pp. 1-8
[19] Function Field Arithmetic, World Scientific Publishing Co., Inc., 2004
[20] Integral ratios of factorials and algebraic hypergeometric functions | arXiv
[21] Certain quantities transcendental over
[22] Certain quantities transcendental over
[23] Two types of function field transcendental numbers, Duke Math. J., Volume 11 (1944), pp. 755-758
[24] Remarks on the Carlitz ψ-functions, Duke Math. J., Volume 13 (1946), pp. 71-78
[25] A transcendence criterion in positive characteristic and applications, C. R. Acad. Sci. Paris, Sér. I, Volume 343 (2006), pp. 699-704
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier