[Fonctions hypergéométriques pour les corps de fonctions et transcendance]
Nous étudions les fonctions hypergéométriques pour , et démontrons dans le cas entier (non polynomial) la transcendance de leurs valeurs spéciales aux arguments algébriques non nuls qui engendrent des extensions du corps de fonctions rationnelles avec au plus places à l'infini. Nous caractérisons aussi dans le cas équilibré l'algébricité des fonctions hypergéométriques.
We study hypergeometric functions for , and show in the entire (non-polynomial) case the transcendence of their special values at nonzero algebraic arguments which generate extension of the rational function field with less than q places at infinity. We also characterize in the balanced case the algebraicity of hypergeometric functions.
Accepté le :
Publié le :
Dinesh S. Thakur 1 ; Zhi-Ying Wen 2 ; Jia-Yan Yao 2 ; Liang Zhao 2
@article{CRMATH_2009__347_9-10_467_0, author = {Dinesh S. Thakur and Zhi-Ying Wen and Jia-Yan Yao and Liang Zhao}, title = {Hypergeometric functions for function fields and transcendence}, journal = {Comptes Rendus. Math\'ematique}, pages = {467--472}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.03.006}, language = {en}, }
TY - JOUR AU - Dinesh S. Thakur AU - Zhi-Ying Wen AU - Jia-Yan Yao AU - Liang Zhao TI - Hypergeometric functions for function fields and transcendence JO - Comptes Rendus. Mathématique PY - 2009 SP - 467 EP - 472 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.03.006 LA - en ID - CRMATH_2009__347_9-10_467_0 ER -
Dinesh S. Thakur; Zhi-Ying Wen; Jia-Yan Yao; Liang Zhao. Hypergeometric functions for function fields and transcendence. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 467-472. doi : 10.1016/j.crma.2009.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.006/
[1] Note sur un article de Sharif et Woodcock, Sém. de Théorie des Nombres de Bordeaux, Volume 1 (1989), pp. 163-187
[2] Transcendence of the Carlitz–Goss gamma function at rational arguments, J. Number Theory, Volume 60 (1996), pp. 318-328
[3] Determination of the algebraic relations among special Γ-values in positive characteristic, Ann. Math., Volume 160 (2004) no. 2, pp. 237-313
[4] C.-Y. Chang, M. Papanikolas, D. Thakur, J. Yu, Algebraic independence of arithmetic gamma values and Carlitz zeta values, (2008), submitted for publication
[5] L. Denis, Transcendance et dérivées de l'exponentielle de Carlitz, in: S. David (Ed.), Progr. Math., vol. 116, Séminaire de Théorie des Nombres (Paris, 1991–92), Birkhäuser, 1993, pp. 1–21
[6] Un critère de transcendance en caractéristique finie, J. Algebra, Volume 182 (1996), pp. 522-533
[7] Valeurs transcendantes des fonctions de Bessel–Carlitz, Ark. Mat., Volume 36 (1998), pp. 73-85
[8] Basic Structures of Function Field Arithmetic, Springer, 1998
[9] Algebraic elements in formal power series rings, Israel J. Math., Volume 63 (1988), pp. 281-288
[10] Some transcendental elements in positive characteristic, Sci. Asia, Volume 26 (2000), pp. 39-48
[11] Transcendence and the Carlitz–Goss gamma function, J. Number Theory, Volume 63 (1997), pp. 396-402
[12] Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., Volume 171 (2008), pp. 123-174
[13] Algebraic functions over a field of positive characteristic and Hadamard products, J. London Math. Soc., Volume 37 (1988), pp. 395-403
[14] Hypergeometric functions for function fields, Finite Fields Appl., Volume 1 (1995), pp. 219-231
[15] Transcendence of gamma values for , Ann. Math., Volume 144 (1996) no. 2, pp. 181-188
[16] An alternate approach to solitons for , J. Number Theory, Volume 76 (1999), pp. 301-319
[17] Hypergeometric functions for function fields II, J. Ramanujan Math. Soc., Volume 15 (2000), pp. 43-52
[18] Integrable systems and number theory in finite characteristic, Adv. Nonlinear Math. Sci. Physica D, Volume 152/153 (2001), pp. 1-8
[19] Function Field Arithmetic, World Scientific Publishing Co., Inc., 2004
[20] Integral ratios of factorials and algebraic hypergeometric functions | arXiv
[21] Certain quantities transcendental over , Duke Math. J., Volume 8 (1941), pp. 701-720
[22] Certain quantities transcendental over , II, Duke Math. J., Volume 10 (1943), pp. 587-594
[23] Two types of function field transcendental numbers, Duke Math. J., Volume 11 (1944), pp. 755-758
[24] Remarks on the Carlitz ψ-functions, Duke Math. J., Volume 13 (1946), pp. 71-78
[25] A transcendence criterion in positive characteristic and applications, C. R. Acad. Sci. Paris, Sér. I, Volume 343 (2006), pp. 699-704
Cité par Sources :
Commentaires - Politique