[Espaces à croissance sur les domaines circulaires : opérateurs de composition et mesures de Carleson]
Soit Ω un domaine circulaire, strictement convexe et borné dans dont le bord est de classe . Nous désignons par l'espace des fonctions holomorphes dans Ω. Soient et une transformation holomorphe. Posons pour . Nous caractérisons les fonctions g et φ pour lesquelles est un opérateur borné ou compact de l'espace à croissance ou de , , dans l'espace de Bergman à poids , , . Nous caractérisons aussi les mesures positives μ sur Ω telles que et les mesures positives μ telles que pour et .
Let be a bounded, circular and strictly convex domain with the boundary of class . Denote by the space of all holomorphic functions in Ω. Given and a holomorphic mapping , put for . We characterize those g and φ for which is a bounded or compact operator from the growth space or , , to the weighted Bergman space , , . Also, given and , we describe those positive measures μ on Ω for which and those μ for which .
Accepté le :
Publié le :
Evgueni Doubtsov 1
@article{CRMATH_2009__347_11-12_609_0, author = {Evgueni Doubtsov}, title = {Growth spaces on circular domains: composition operators and {Carleson} measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {609--612}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.04.003}, language = {en}, }
Evgueni Doubtsov. Growth spaces on circular domains: composition operators and Carleson measures. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 609-612. doi : 10.1016/j.crma.2009.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.003/
[1] Proper holomorphic mappings from the ball to the polydisk, Dokl. Akad. Nauk SSSR, Volume 286 (1986) no. 1, pp. 11-15 (in Russian); English transl.: Soviet Math. Dokl., 33, 1, 1986, pp. 1-5
[2] Bloch-to-BMOA compositions in several complex variables, Complex Var. Theory Appl., Volume 50 (2005) no. 14, pp. 1061-1080
[3] An interpolation problem for bounded analytic functions, Amer. J. Math., Volume 80 (1958), pp. 921-930
[4] Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995
[5] Carleson measures for the Bloch space, Integral Equations Operator Theory, Volume 61 (2008) no. 4, pp. 511-547
[6] Homogeneous polynomials on strictly convex domains, Proc. Amer. Math. Soc., Volume 135 (2007) no. 12, pp. 3895-3903
[7] Bounded mean oscillation of Bloch pull-backs, Math. Ann., Volume 291 (1991) no. 4, pp. 591-606
[8] New Constructions of Functions Holomorphic in the Unit Ball of , CBMS Regional Conference Series in Mathematics, vol. 63, 1986 (Published for the Conference Board of the Mathematical Sciences, Washington, DC)
[9] On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc., Volume 276 (1983) no. 1, pp. 107-116
[10] A Bloch function in the ball with no radial limits, Bull. London Math. Soc., Volume 20 (1988) no. 4, pp. 337-341
[11] On highly nonintegrable functions and homogeneous polynomials, Ann. Polon. Math., Volume 65 (1997) no. 3, pp. 245-251
Cité par Sources :
Commentaires - Politique