Comptes Rendus
Harmonic Analysis/Calculus of Variations
Fractional integrals and Ap-weights: A sharp estimate
[Intégrales fractionnaires et Ap-poids : une estimation optimale]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1265-1270.

On considère une inégalité à poids Ap, pour des potentiels de Riesz dans Rn. La constante de l'inégalité dépend de la constante Ap du poids. On donne la forme exacte de la dépendance, en particulier on précise l'exposant optimal de la constante Ap du poids.

We are concerned with an inequality, with an Ap weight, for Riesz potentials in Rn. The constant in the relevant inequality is known to depend on the Ap constant of the weight. We find the exact form of this dependence. In particular, we exhibit the optimal exponent for the Ap constant of the weight.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.001

Teresa Alberico 1 ; Andrea Cianchi 2 ; Carlo Sbordone 1

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Via Cintia, 80126 Napoli, Italy
2 Dipartimento di Matematica e Applicazioni per l'Architettura, Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy
@article{CRMATH_2009__347_21-22_1265_0,
     author = {Teresa Alberico and Andrea Cianchi and Carlo Sbordone},
     title = {Fractional integrals and $ {A}_{p}$-weights: {A} sharp estimate},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1265--1270},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.001},
     language = {en},
}
TY  - JOUR
AU  - Teresa Alberico
AU  - Andrea Cianchi
AU  - Carlo Sbordone
TI  - Fractional integrals and $ {A}_{p}$-weights: A sharp estimate
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1265
EP  - 1270
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.001
LA  - en
ID  - CRMATH_2009__347_21-22_1265_0
ER  - 
%0 Journal Article
%A Teresa Alberico
%A Andrea Cianchi
%A Carlo Sbordone
%T Fractional integrals and $ {A}_{p}$-weights: A sharp estimate
%J Comptes Rendus. Mathématique
%D 2009
%P 1265-1270
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.09.001
%G en
%F CRMATH_2009__347_21-22_1265_0
Teresa Alberico; Andrea Cianchi; Carlo Sbordone. Fractional integrals and $ {A}_{p}$-weights: A sharp estimate. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1265-1270. doi : 10.1016/j.crma.2009.09.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.001/

[1] K. Astala; T. Iwaniec; E. Saksman Beltrami operators in the plane, Duke Math. J., Volume 107 (2001), pp. 27-56

[2] S.M. Buckley Estimates for operator norms on weighted spaces and Reverse Jensen Inequalities, Trans. Amer. Math. Soc., Volume 340 (1993), pp. 253-272

[3] R. Coifman; C. Fefferman Weighted norm inequalities for maximal functions and singular integrals, Studia Math., Volume 51 (1974), pp. 241-250

[4] F. Chiarenza; M. Frasca A Note on a weighted Sobolev inequality, Proc. Amer. Math. Soc., Volume 93 (1985), pp. 703-704

[5] E.B. Fabes; C.E. Kenig; R.P. Serapioni The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differentioal Equations, Volume 7 (1982), pp. 77-116

[6] L. Grafakos Classical and Modern Fourier Analysis, Prentice-Hall, New Jersey, 2003

[7] L.I. Hedberg On certain convolution inequalities, Proc. Amer. Math. Soc., Volume 36 (1972), pp. 505-510

[8] V.G. Maz'ya Sobolev Spaces, Springer, Berlin, 1985

[9] B. Muckenhoupt Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., Volume 165 (1972), pp. 207-226

[10] B. Muckenhoupt; R. Wheeden Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., Volume 192 (1974), pp. 261-274

[11] S. Petermichl The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic, Amer. J. Math., Volume 129 (2007), pp. 1355-1375

[12] S. Petermichl The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1237-1249

[13] S. Petermichl; A. Volberg Heating of the Ahlfors–Beurling operator: Weakly quasiregular maps on the plane are quasiregular, Duke Math. J., Volume 112 (2002), pp. 281-305

[14] E.M. Stein Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, 1993

Cité par Sources :

Commentaires - Politique