Comptes Rendus
Partial Differential Equations/Numerical Analysis
Asymptotic expansions of the eigenvalues of a 2-D boundary-value problem relative to two cavities linked by a hole of small size
[Développement asymptotique des valeurs et fonctions propres d'un problème aux limites 2-D relatif à deux cavités reliées par un trou de petite taille.1]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1147-1152.

Cette Note présente la dérivation du développement asymptotique au 2nd ordre des valeurs et des fonctions propres de l'opérateur associé à une équation elliptique complétée par une condition aux limites de Dirichlet sur un domaine formé de deux cavités reliées par un trou de petite taille. Le développement asymptotique est effectué relativement à la taille du trou. La principale caractéristique de la méthode est de donner lieu à une procédure numérique permettant de calculer les valeurs propres sans recourir à un maillage raffiné autour du trou.

This Note presents the derivation of the 2nd-order asymptotic expansion of the eigenvalues and the eigenfunctions of the operator associated to an interior elliptic equation supplemented by a Dirichlet boundary condition on a domain consisting of two cavities linked by a hole of small size. The asymptotic expansion is carried out with respect to the size of the hole. The main feature of the method is to yield a robust numerical procedure making it possible to compute the eigenvalues without resorting to a refined mesh around the hole.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.005

Abderrahmane Bendali 1 ; Alain Huard 1 ; Abdelkader Tizaoui 1 ; Sébastien Tordeux 1 ; Jean-Paul Vila 1

1 Toulouse University, INSA, Mathematical Institute of Toulouse (UMR-CNRS 5219), 135, avenue de Rangueil, 31077 Toulouse, France
@article{CRMATH_2009__347_19-20_1147_0,
     author = {Abderrahmane Bendali and Alain Huard and Abdelkader Tizaoui and S\'ebastien Tordeux and Jean-Paul Vila},
     title = {Asymptotic expansions of the eigenvalues of a {2-D} boundary-value problem relative to two cavities linked by a hole of small size},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1147--1152},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.005},
     language = {en},
}
TY  - JOUR
AU  - Abderrahmane Bendali
AU  - Alain Huard
AU  - Abdelkader Tizaoui
AU  - Sébastien Tordeux
AU  - Jean-Paul Vila
TI  - Asymptotic expansions of the eigenvalues of a 2-D boundary-value problem relative to two cavities linked by a hole of small size
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1147
EP  - 1152
VL  - 347
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.005
LA  - en
ID  - CRMATH_2009__347_19-20_1147_0
ER  - 
%0 Journal Article
%A Abderrahmane Bendali
%A Alain Huard
%A Abdelkader Tizaoui
%A Sébastien Tordeux
%A Jean-Paul Vila
%T Asymptotic expansions of the eigenvalues of a 2-D boundary-value problem relative to two cavities linked by a hole of small size
%J Comptes Rendus. Mathématique
%D 2009
%P 1147-1152
%V 347
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2009.09.005
%G en
%F CRMATH_2009__347_19-20_1147_0
Abderrahmane Bendali; Alain Huard; Abdelkader Tizaoui; Sébastien Tordeux; Jean-Paul Vila. Asymptotic expansions of the eigenvalues of a 2-D boundary-value problem relative to two cavities linked by a hole of small size. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1147-1152. doi : 10.1016/j.crma.2009.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.005/

[1] C. Anné A note on the generalized Dumbbell problem, Proc. Amer. Math. Soc., Volume 123 (1995), pp. 2595-2599

[2] J.T. Beale Scattering frequencies of resonators, Comm. Pure Appl. Math., Volume 26 (1973), pp. 549-563

[3] A. Bendali, A. Tizaoui, S. Tordeux, J.P. Vila, Matching of asymptotic expansions for an eigenvalue problem with two cavities linked by a narrow hole, SAM Research Report, ETH Zürich, 2009, no. 17

[4] R.M. Brown; P.D. Hislop; A. Martinez Lower bounds on the interaction between cavities connected by a thin tube, Duke Math. J., Volume 73 (1994), pp. 163-176

[5] R.R. Gadyl'shin Surface potentials and the method of matching asymptotic expansions in the Helmholtz resonator problem, Algebra i Analiz, Volume 4 (1992) no. 2, pp. 88-115 (in Russian), translation in St. Petersburg Math. J., 4, 2, 1993, pp. 273-296

[6] A.M. Il'in Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, vol. 102, American Mathematical Society, Providence, RI, 1992 (translated from the Russian by V. Minachin)

[7] P. Joly; S. Tordeux Matching of asymptotic expansions for wave propagation in media with thin slots. I. The asymptotic expansion, Multiscale Model. Simul., Volume 5 (2006), pp. 304-336

[8] P. Joly; S. Tordeux Matching of asymptotic expansions for waves propagation in media with thin slots. II. The error estimates, M2AN Math. Model. Numer. Anal., Volume 42 (2008), pp. 193-221

[9] J. Rauch; F. Taylor Electrostatic screening, J. Math. Phys., Volume 16 (1975), pp. 284-288

[10] J. Sanchez-Hubert; E. Sánchez-Palencia Acoustic fluid flow through holes and permeability of perforated walls, J. Math. Anal. Appl., Volume 87 (1982), pp. 427-453

[11] E.O. Tuck Matching problems involving flow through small holes, Advances in Applied Mechanics, vol. 15, Academic Press, New York, 1975, pp. 89-158

[12] M. Van Dyke Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, CA, 1975 (annotated)

Cité par Sources :

This work was supported by the French National Research Agency under grant no. ANR-08-SYSC-001.

Commentaires - Politique