Comptes Rendus
Mathematical Problems in Mechanics
Radiation condition and uniqueness for the outgoing elastic wave in a half-plane with free boundary
[Condition de radiation et unicité pour l'onde élastique sortante dans un demi-plane avec frontière libre]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1321-1324.

Dans cette Note, nous exhibons une condition de radiation explicite, du type Sommerfeld, qui nous permet de montrer (dans le domaine fréquenciel) l'unicité des solutions du problème d'onde élastique sortante dans un demi-plan avec frontière libre. Cette expression est obtenue par une analyse asymptotique rigoureuse de la fonction de Green's associée. La difficulté principale est que la condition de bord de frontière libre permet la propagation d'une onde de Rayleigh qui n'est pas négligeable dans le champ lointain. Nous donnons également un résultat d'existence pour ce problème.

In this Note we deduce an explicit Sommerfeld-type radiation condition which is convenient to prove the uniqueness for the time-harmonic outgoing wave problem in an isotropic elastic half-plane with free boundary condition. The expression is obtained from a rigorous asymptotic analysis of the associated Green's function. The main difficulty is that the free boundary condition allows the propagation of a Rayleigh wave which cannot be neglected in the far field expansion. We also give the existence result for this problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.005

Mario Durán 1 ; Ignacio Muga 2 ; Jean-Claude Nédélec 3

1 Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
2 Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
3 CMAP, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2009__347_21-22_1321_0,
     author = {Mario Dur\'an and Ignacio Muga and Jean-Claude N\'ed\'elec},
     title = {Radiation condition and uniqueness for the outgoing elastic wave in a half-plane with free boundary},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1321--1324},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.005},
     language = {en},
}
TY  - JOUR
AU  - Mario Durán
AU  - Ignacio Muga
AU  - Jean-Claude Nédélec
TI  - Radiation condition and uniqueness for the outgoing elastic wave in a half-plane with free boundary
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1321
EP  - 1324
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.005
LA  - en
ID  - CRMATH_2009__347_21-22_1321_0
ER  - 
%0 Journal Article
%A Mario Durán
%A Ignacio Muga
%A Jean-Claude Nédélec
%T Radiation condition and uniqueness for the outgoing elastic wave in a half-plane with free boundary
%J Comptes Rendus. Mathématique
%D 2009
%P 1321-1324
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.10.005
%G en
%F CRMATH_2009__347_21-22_1321_0
Mario Durán; Ignacio Muga; Jean-Claude Nédélec. Radiation condition and uniqueness for the outgoing elastic wave in a half-plane with free boundary. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1321-1324. doi : 10.1016/j.crma.2009.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.005/

[1] Leïla Alem; Lahcène Chorfi Théorème d'unicité pour un problème d'ondes élastiques, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 6, pp. 525-530

[2] Mario Durán; Eduardo Godoy; Jean-Claude Nédélec Computing Green's function of elasticity in a half-plane with impedance boundary condition, C. R. Mec., Volume 334 (2006) no. 12, pp. 725-731

[3] Mario Durán; Ignacio Muga; Jean-Claude Nédélec The Helmholtz equation in a locally perturbed half-plane with passive boundary, IMA J. Appl. Math., Volume 71 (2006) no. 6, pp. 853-876

[4] Mario Durán; Ignacio Muga; Jean-Claude Nédélec The Helmholtz equation in a locally perturbed half-space with non-absorbing boundary, Arch. Ration. Mech. Anal., Volume 191 (2009) no. 1, pp. 143-172

[5] Lawrence C. Evans Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998

[6] V.D. Kupradze; T.G. Gegelia; M.O. Basheleĭshvili; T.V. Burchuladze Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity (V.D. Kupradze, ed.), North-Holland Series in Applied Mathematics and Mechanics, vol. 25, North-Holland Publishing Co., Amsterdam, 1979 (Russian ed)

Cité par Sources :

Commentaires - Politique