Comptes Rendus
Mathematical Economics/Partial Differential Equations
Obstacle problem for Arithmetic Asian options
[Problème de l'obstacle pour l'option américain asiatique à moyenne arithmétique]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1443-1446.

On démontre l'existence, la régularité et une formule de représentation de Feynman–Kač de la solution forte d'un problème avec frontière libre. Ce type de problème on le retrouve en finance pour évaluer le prix d'une option asiatique à moyenne arithmétique de style américain.

We prove existence, regularity and a Feynman–Kač representation formula of the strong solution to the free boundary problem arising in the financial problem of the pricing of the American Asian option with arithmetic average.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.019

Laura Monti 1 ; Andrea Pascucci 1

1 Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
@article{CRMATH_2009__347_23-24_1443_0,
     author = {Laura Monti and Andrea Pascucci},
     title = {Obstacle problem for {Arithmetic} {Asian} options},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1443--1446},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.019},
     language = {en},
}
TY  - JOUR
AU  - Laura Monti
AU  - Andrea Pascucci
TI  - Obstacle problem for Arithmetic Asian options
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1443
EP  - 1446
VL  - 347
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.019
LA  - en
ID  - CRMATH_2009__347_23-24_1443_0
ER  - 
%0 Journal Article
%A Laura Monti
%A Andrea Pascucci
%T Obstacle problem for Arithmetic Asian options
%J Comptes Rendus. Mathématique
%D 2009
%P 1443-1446
%V 347
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2009.10.019
%G en
%F CRMATH_2009__347_23-24_1443_0
Laura Monti; Andrea Pascucci. Obstacle problem for Arithmetic Asian options. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1443-1446. doi : 10.1016/j.crma.2009.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.019/

[1] E. Barucci; S. Polidoro; V. Vespri Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 475-497

[2] M. Dai; Z.Q. Xu Optimal redeeming strategy of stock loans, 2009 | arXiv

[3] M. Di Francesco; A. Pascucci On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express (2005), pp. 77-116

[4] M. Di Francesco; A. Pascucci; S. Polidoro The obstacle problem for a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 464 (2008), pp. 155-176

[5] M. Frentz, K. Nyström, A. Pascucci, S. Polidoro, Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options, Math. Ann. (2009), in press

[6] A. Friedman Stochastic Differential Equations and Applications, vol. 2., Probability and Mathematical Statistics, vol. 28, Academic Press, 1976

[7] A. Friedman; W. Shen A variational inequality approach to financial valuation of retirement benefits based on salary, Finance Stoch., Volume 6 (2002), pp. 273-302

[8] J.E. Ingersoll Theory of Financial Decision Making, Blackwell, Oxford, 1987

[9] E. Lanconelli; S. Polidoro On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, Volume 52 (1994), pp. 29-63 Partial differential equations, II (Turin, 1993)

[10] K. Nyström, A. Pascucci, S. Polidoro, Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators, 2009, submitted for publication

[11] A. Pascucci Free boundary and optimal stopping problems for American Asian options, Finance Stoch., Volume 12 (2008), pp. 21-41

[12] G. Peskir; A. Shiryaev Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2006

[13] L.C.G. Rogers; Z. Shi The value of an Asian option, J. Appl. Probab., Volume 32 (1995), pp. 1077-1088

Cité par Sources :

Commentaires - Politique