[Topologie des variétés de caractères et représentations de carquois]
Dans Hausel et al. (2008) [10] nous avons énoncé une conjecture qui généralise la formule de Cauchy pour les polynômes de Macdonald. Cette formule contient l'information sur les polynômes de Hodge mixtes des variétés de représentations du groupe fondamental d'une surface de Riemann épointée de genre g. Nous avons montré plusieurs résultats qui appuient notre conjecture. Ici nous présentons de nouveaux résultats qui sont des conséquences de ceux de Hausel et al. (2008) [10].
In Hausel et al. (2008) [10] we presented a conjecture generalizing the Cauchy formula for Macdonald polynomial. This conjecture encodes the mixed Hodge polynomials of the character varieties of representations of the fundamental group of a punctured Riemann surface of genus g. We proved several results which support this conjecture. Here we announce new results which are consequences of those in Hausel et al. (2008) [10].
Accepté le :
Publié le :
Tamás Hausel 1 ; Emmanuel Letellier 2 ; Fernando Rodriguez Villegas 3
@article{CRMATH_2010__348_3-4_131_0, author = {Tam\'as Hausel and Emmanuel Letellier and Fernando Rodriguez Villegas}, title = {Topology of character varieties and representations of quivers}, journal = {Comptes Rendus. Math\'ematique}, pages = {131--135}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2010.01.025}, language = {en}, }
TY - JOUR AU - Tamás Hausel AU - Emmanuel Letellier AU - Fernando Rodriguez Villegas TI - Topology of character varieties and representations of quivers JO - Comptes Rendus. Mathématique PY - 2010 SP - 131 EP - 135 VL - 348 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2010.01.025 LA - en ID - CRMATH_2010__348_3-4_131_0 ER -
Tamás Hausel; Emmanuel Letellier; Fernando Rodriguez Villegas. Topology of character varieties and representations of quivers. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 131-135. doi : 10.1016/j.crma.2010.01.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.025/
[1] The character of the infinite wedge representation, Adv. Math., Volume 149 (2000) no. 1, pp. 1-60
[2] Geometry of the moment map for representations of quivers, Comput. Math., Volume 126 (2001), pp. 257-293
[3] Normality of Mardsen–Weinstein reductions for representations of quivers, Math. Ann., Volume 325 (2003), pp. 55-79
[4] Absolutely indecomposable representations and Kac–Moody Lie algebras, Invent. Math., Volume 155 (2004) no. 3, pp. 537-559 (with an appendix by Hiraku Nakajima)
[5] Théorie de Hodge II, Inst. Hautes Etudes Sci. Publ. Math., Volume 40 (1971), pp. 5-47
[6] A remarkable q,t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combin., Volume 5 (1996) no. 3, pp. 191-244
[7] Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces, Comm. Math. Phys., Volume 206 (1999), pp. 105-136
[8] Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann., Volume 296 (1993), pp. 235-245
[9] T. Hausel, Arithmetic harmonic analysis, Macdonald polynomials and the topology of the Riemann–Hilbert monodromy map, with an appendix by E. Letellier, in preparation
[10] Arithmetic harmonic analysis on character and quiver varieties, 2008 | arXiv
[11] T. Hausel, E. Letellier, F. Rodriguez-Villegas, Arithmetic harmonic analysis on character and quiver varieties II, in preparation
[12] Root systems, representations of quivers and invariant theory, Lecture Notes in Math., vol. 996, Springer-Verlag, 1982, pp. 74-108
Cité par Sources :
Commentaires - Politique