[Sur les séries d'Eisenstein et la cohomologie des groupes arithmétiques]
La cohomologie automorphe d'un
The automorphic cohomology of a reductive
Accepté le :
Publié le :
Neven Grbac 1 ; Joachim Schwermer 2, 3
@article{CRMATH_2010__348_11-12_597_0, author = {Neven Grbac and Joachim Schwermer}, title = {On {Eisenstein} series and the cohomology of arithmetic groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {597--600}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.007}, language = {en}, }
Neven Grbac; Joachim Schwermer. On Eisenstein series and the cohomology of arithmetic groups. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 597-600. doi : 10.1016/j.crma.2010.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.007/
[1] Harmonic analysis in weighted
[2] A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann., Volume 311 (1998) no. 4, pp. 765-790
[3] Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math., Volume 74 (1961), pp. 329-387
[4] On the Functional Equations Satisfied by Eisenstein Series, Lect. Notes in Math., vol. 544, Springer, Berlin–Heidelberg–New York, 1976
[5] On the Eisenstein cohomology of arithmetic groups, Duke Math. J., Volume 123 (2004), pp. 141-169
[6] Décomposition spectrale et séries d'Eisenstein, Progress in Math., vol. 113, Birkhäuser, Boston, Basel, Berlin, 1994
[7] Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lect. Notes in Math., vol. 988, Springer, Berlin–Heidelberg–New York, 1983
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier