Comptes Rendus
Number Theory/Group Theory
On Eisenstein series and the cohomology of arithmetic groups
[Sur les séries d'Eisenstein et la cohomologie des groupes arithmétiques]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 597-600.

La cohomologie automorphe d'un Q-groupe réductif G détecte des propriétés analytiques essentielles des sous-groupes arithmétiques de G. La cohomologie d'Eisenstein est le sous-espace engendré par tous les résidus ainsi que par les valeurs principales des dérivées des séries d'Eisenstein, attachées aux formes automorphes cuspidales π sur les facteurs de Levi des Q-sous-groupes paraboliques propres de G. Nous montrons que les classes non triviales ne peuvent provenir que des évaluations aux points « demi-entiers ». Ainsi, savoir si une série d'Eisenstein attachée à une forme π générique donne lieu à une classe résiduelle ou non, ne dépend que du comportement analytique de fonctions L automorphes en des points demi-entiers.

The automorphic cohomology of a reductive Q-group G captures essential analytic aspects of the arithmetic subgroups of G. The subspace spanned by all possible residues and principal values of derivatives of Eisenstein series, attached to cuspidal automorphic forms π on the Levi factor of proper parabolic Q-subgroups of G, forms the Eisenstein cohomology. We show that non-trivial classes can only arise if the point of evaluation features a “half-integral” property. Consequently, only the analytic behavior of the automorphic L-functions at half-integral arguments matters whether an Eisenstein series attached to a globally generic π gives rise to a residual class or not.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.04.007

Neven Grbac 1 ; Joachim Schwermer 2, 3

1 Department of Mathematics, University of Rijeka, Omladinska 14, 51000 Rijeka, Croatia
2 Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria
3 Erwin Schrödinger International Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Vienna, Austria
@article{CRMATH_2010__348_11-12_597_0,
     author = {Neven Grbac and Joachim Schwermer},
     title = {On {Eisenstein} series and the cohomology of arithmetic groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {597--600},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.04.007},
     language = {en},
}
TY  - JOUR
AU  - Neven Grbac
AU  - Joachim Schwermer
TI  - On Eisenstein series and the cohomology of arithmetic groups
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 597
EP  - 600
VL  - 348
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2010.04.007
LA  - en
ID  - CRMATH_2010__348_11-12_597_0
ER  - 
%0 Journal Article
%A Neven Grbac
%A Joachim Schwermer
%T On Eisenstein series and the cohomology of arithmetic groups
%J Comptes Rendus. Mathématique
%D 2010
%P 597-600
%V 348
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2010.04.007
%G en
%F CRMATH_2010__348_11-12_597_0
Neven Grbac; Joachim Schwermer. On Eisenstein series and the cohomology of arithmetic groups. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 597-600. doi : 10.1016/j.crma.2010.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.007/

[1] J. Franke Harmonic analysis in weighted L2-spaces, Ann. Sci. École Norm. Sup., Volume 31 (1998) no. 2, pp. 181-279

[2] J. Franke; J. Schwermer A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann., Volume 311 (1998) no. 4, pp. 765-790

[3] B. Kostant Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math., Volume 74 (1961), pp. 329-387

[4] R.P. Langlands On the Functional Equations Satisfied by Eisenstein Series, Lect. Notes in Math., vol. 544, Springer, Berlin–Heidelberg–New York, 1976

[5] J.S. Li; J. Schwermer On the Eisenstein cohomology of arithmetic groups, Duke Math. J., Volume 123 (2004), pp. 141-169

[6] C. Mœglin; J.-L. Waldspurger Décomposition spectrale et séries d'Eisenstein, Progress in Math., vol. 113, Birkhäuser, Boston, Basel, Berlin, 1994

[7] J. Schwermer Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lect. Notes in Math., vol. 988, Springer, Berlin–Heidelberg–New York, 1983

Cité par Sources :

Commentaires - Politique