Comptes Rendus
Partial Differential Equations/Numerical Analysis
Perfectly matched layers for the heat and advection–diffusion equations
[Couches parfaitement adaptées pour les équations de la chaleur et d'advection–diffusion]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 781-785.

Nous avons construit des Couches Parfaitement Adaptées (CPA) aux équations d'advection diffusion. Nous montrons que le coefficient de réflexion est exponentiellement petit par rapport au paramètre d'amortissement et de la largeur des CPA et ce, indépendamment des coefficients d'advection ou de viscosité. Les tests numériques présentés prouvent l'efficacité de la méthode.

We design a perfectly matched layer for the advection–diffusion equation. We show that the reflection coefficient is exponentially small with respect to the damping parameter and the width of the PML and independently of the advection and of the viscosity parameters. Numerical tests assess the efficiency of the approach.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.05.004

Nicolas Lantos 1, 2 ; Frédéric Nataf 1

1 UPMC Université Paris-06, UMR 7598, Laboratoire J.L. Lions, 75006 Paris, France
2 Natixis Corporate Solutions Bank, 30, avenue Georges V, 75008 Paris, France
@article{CRMATH_2010__348_13-14_781_0,
     author = {Nicolas Lantos and Fr\'ed\'eric Nataf},
     title = {Perfectly matched layers for the heat and advection{\textendash}diffusion equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {781--785},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.05.004},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Lantos
AU  - Frédéric Nataf
TI  - Perfectly matched layers for the heat and advection–diffusion equations
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 781
EP  - 785
VL  - 348
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2010.05.004
LA  - en
ID  - CRMATH_2010__348_13-14_781_0
ER  - 
%0 Journal Article
%A Nicolas Lantos
%A Frédéric Nataf
%T Perfectly matched layers for the heat and advection–diffusion equations
%J Comptes Rendus. Mathématique
%D 2010
%P 781-785
%V 348
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2010.05.004
%G en
%F CRMATH_2010__348_13-14_781_0
Nicolas Lantos; Frédéric Nataf. Perfectly matched layers for the heat and advection–diffusion equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 781-785. doi : 10.1016/j.crma.2010.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.05.004/

[1] J.P. Berenger A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 114 (1994), pp. 185-200

[2] M. Ehrhardt, R.E. Mickens, Discrete artificial boundary conditions for the Black–Scholes equation of American options, Matheon preprint

[3] B. Engquist; A. Majda Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., Volume 31 (1977), pp. 629-651

[4] D. Givoli Numerical Methods in Thermal Problems, vol. VI, part 2, Pineridge Press, Swansea, UK, 1989 (pp. 1094–1104)

[5] L. Halpern; J. Rauch Artificial boundary conditions for diffusion equations, Numer. Math., Volume 71 (1995), pp. 185-224

[6] P. Joly Pseudo-transparent boundary conditions for the diffusion equation. I, Math. Methods Appl. Sci., Volume 11 (1989), pp. 725-758

[7] F. Nataf A new approach to perfectly matched layers for the linearized Euler system, J. Comput. Phys., Volume 214 (2006), pp. 757-772

Cité par Sources :

Commentaires - Politique