[Une méthode de perturbation pour les solutions localisées des équations d'Einstein–Dirac–Maxwell]
Le but de cette Note est de démontrer par une méthode de perturbation l'existence de solutions des équations d'Einstein–Dirac–Maxwell pour un système statique, à symétrie sphérique de deux fermions dans un état de singulet et avec une constante de couplage électromagnétique
The aim of this Note is to prove by a perturbation method the existence of solutions of the coupled Einstein–Dirac–Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state and with the electromagnetic coupling constant
Accepté le :
Publié le :
Simona Rota Nodari 1, 2
@article{CRMATH_2010__348_13-14_791_0, author = {Simona Rota Nodari}, title = {Perturbation method for particle-like solutions of the {Einstein{\textendash}Dirac{\textendash}Maxwell} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {791--794}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.003}, language = {en}, }
TY - JOUR AU - Simona Rota Nodari TI - Perturbation method for particle-like solutions of the Einstein–Dirac–Maxwell equations JO - Comptes Rendus. Mathématique PY - 2010 SP - 791 EP - 794 VL - 348 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2010.06.003 LA - en ID - CRMATH_2010__348_13-14_791_0 ER -
Simona Rota Nodari. Perturbation method for particle-like solutions of the Einstein–Dirac–Maxwell equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 791-794. doi : 10.1016/j.crma.2010.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.003/
[1] Particle-like solutions of the Einstein–Dirac equations, Physical Review D. Particles and Fields. Third Series, Volume 59 (1999), p. 104020
[2] Particle-like solutions of the Einstein–Dirac–Maxwell equations, Phys. Lett. A, Volume 259 (1999) no. 6, pp. 431-436
[3] E. Lenzmann, Uniqueness of ground states for pseudo-relativistic Hartree equations, preprint, 2008
[4] Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Applied Mathematics, Volume 57 (1977), pp. 93-105
[5] The Choquard equation and related questions, Nonlinear Analysis. Theory, Methods and Applications, Volume 4 (1980) no. 6, pp. 1063-1073
[6] Perturbation method for a class of non linear Dirac equations, Differential Integral Equations, Volume 13 (2000) no. 4–6, pp. 707-720
[7] Perturbation method for particle-like solutions of the Einstein–Dirac equations, Ann. Henri Poincaré, Volume 10 (2010) no. 7, pp. 1377-1393 | DOI
- Multi-state Dirac stars, The European Physical Journal C, Volume 84 (2024) no. 1 | DOI:10.1140/epjc/s10052-023-12345-6
- Einstein-Dirac system in semiclassical gravity, Physical Review D, Volume 107 (2023) no. 12 | DOI:10.1103/physrevd.107.124001
- Nonlinear effects in the excited states of many-fermion Einstein-Dirac solitons, Physical Review D, Volume 104 (2021) no. 4 | DOI:10.1103/physrevd.104.046024
- Small amplitude solitary waves in the Dirac-Maxwell system, Communications on Pure and Applied Analysis, Volume 17 (2018) no. 4, pp. 1349-1370 | DOI:10.3934/cpaa.2018066 | Zbl:1394.35109
- Solitary Waves in the Nonlinear Dirac Equation, Nonlinear Systems, Vol. 1 (2018), p. 89 | DOI:10.1007/978-3-319-66766-9_4
- Nonrelativistic asymptotics of solitary waves in the Dirac equation with Soler-type nonlinearity, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 4, pp. 2527-2572 | DOI:10.1137/16m1081385 | Zbl:1375.35427
- Polarons as stable solitary wave solutions to the Dirac–Coulomb system, Journal of Physics A: Mathematical and Theoretical, Volume 46 (2013) no. 43, p. 435201 | DOI:10.1088/1751-8113/46/43/435201
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique