[Une méthode de perturbation pour les solutions localisées des équations d'Einstein–Dirac–Maxwell]
The aim of this Note is to prove by a perturbation method the existence of solutions of the coupled Einstein–Dirac–Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state and with the electromagnetic coupling constant
Le but de cette Note est de démontrer par une méthode de perturbation l'existence de solutions des équations d'Einstein–Dirac–Maxwell pour un système statique, à symétrie sphérique de deux fermions dans un état de singulet et avec une constante de couplage électromagnétique
Accepté le :
Publié le :
Simona Rota Nodari 1, 2
@article{CRMATH_2010__348_13-14_791_0, author = {Simona Rota Nodari}, title = {Perturbation method for particle-like solutions of the {Einstein{\textendash}Dirac{\textendash}Maxwell} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {791--794}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.003}, language = {en}, }
TY - JOUR AU - Simona Rota Nodari TI - Perturbation method for particle-like solutions of the Einstein–Dirac–Maxwell equations JO - Comptes Rendus. Mathématique PY - 2010 SP - 791 EP - 794 VL - 348 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2010.06.003 LA - en ID - CRMATH_2010__348_13-14_791_0 ER -
Simona Rota Nodari. Perturbation method for particle-like solutions of the Einstein–Dirac–Maxwell equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 791-794. doi : 10.1016/j.crma.2010.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.003/
[1] Particle-like solutions of the Einstein–Dirac equations, Physical Review D. Particles and Fields. Third Series, Volume 59 (1999), p. 104020
[2] Particle-like solutions of the Einstein–Dirac–Maxwell equations, Phys. Lett. A, Volume 259 (1999) no. 6, pp. 431-436
[3] E. Lenzmann, Uniqueness of ground states for pseudo-relativistic Hartree equations, preprint, 2008
[4] Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Applied Mathematics, Volume 57 (1977), pp. 93-105
[5] The Choquard equation and related questions, Nonlinear Analysis. Theory, Methods and Applications, Volume 4 (1980) no. 6, pp. 1063-1073
[6] Perturbation method for a class of non linear Dirac equations, Differential Integral Equations, Volume 13 (2000) no. 4–6, pp. 707-720
[7] Perturbation method for particle-like solutions of the Einstein–Dirac equations, Ann. Henri Poincaré, Volume 10 (2010) no. 7, pp. 1377-1393 | DOI
Cité par Sources :
Commentaires - Politique