Comptes Rendus
Partial Differential Equations
Existence and conservation laws for the Boltzmann–Fermi–Dirac equation in a general domain
[Existence et lois de conservation pour l'équation de Boltzmann–Fermi–Dirac dans un domaine quelconque]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 763-767.

On montre un théorème d'existence pour l'équation de Boltzmann–Fermi–Dirac avec un noyau de collision intégrable, dans un domaine quelconque (éventuellement borné) avec réflexion spéculaire au bord, grâce aux caractéristiques du transport libre. On obtient ensuite que la solution satisfait les conservations locale de la masse, de l'impulsion et de l'énergie cinétique, grâce à une technique de dispersion.

We prove an existence theorem for the Boltzmann–Fermi–Dirac equation for integrable collision kernels in possibly bounded domains with specular reflection at the boundaries, using the characteristic lines of the free transport. We then obtain that the solution satisfies the local conservations of mass, momentum and kinetic energy thanks to a dispersion technique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.015

Thibaut Allemand 1

1 Département de mathématiques et applications, École normale supérieure, 45, rue d'Ulm, 75005 Paris, France
@article{CRMATH_2010__348_13-14_763_0,
     author = {Thibaut Allemand},
     title = {Existence and conservation laws for the {Boltzmann{\textendash}Fermi{\textendash}Dirac} equation in a general domain},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {763--767},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.015},
     language = {en},
}
TY  - JOUR
AU  - Thibaut Allemand
TI  - Existence and conservation laws for the Boltzmann–Fermi–Dirac equation in a general domain
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 763
EP  - 767
VL  - 348
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2010.06.015
LA  - en
ID  - CRMATH_2010__348_13-14_763_0
ER  - 
%0 Journal Article
%A Thibaut Allemand
%T Existence and conservation laws for the Boltzmann–Fermi–Dirac equation in a general domain
%J Comptes Rendus. Mathématique
%D 2010
%P 763-767
%V 348
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2010.06.015
%G en
%F CRMATH_2010__348_13-14_763_0
Thibaut Allemand. Existence and conservation laws for the Boltzmann–Fermi–Dirac equation in a general domain. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 763-767. doi : 10.1016/j.crma.2010.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.015/

[1] T. Allemand, The incompressible Euler limit of the Boltzmann equation for a gas of fermions, preprint

[2] R.J. DiPerna; P.-L. Lions On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. (2), Volume 130 (1989), pp. 321-366

[3] J. Dolbeault Kinetic models and quantum effects: A modified Boltzmann equation for Fermi–Dirac particles, Arch. Rational Mech. Anal., Volume 127 (1994), pp. 101-131

[4] K. Hamdache Initial-boundary value problems for the Boltzmann equation: Global existence of weak solutions, Arch. Rational Mech. Anal., Volume 119 (1992), pp. 309-353

[5] S. Kaniel; M. Shinbrot The Boltzmann equation. I. Uniqueness and local existence, Comm. Math. Phys., Volume 58 (1978), pp. 65-84

[6] X. Lu On the Boltzmann equation for Fermi–Dirac particles with very soft potentials: Global existence of weak solutions, Journal of Differential Equations, Volume 245 (2008), pp. 1705-1761

[7] B. Perthame Global existence to the BGK model of Boltzmann equation, Journal of Differential Equations, Volume 82 (1989), pp. 191-205

Cité par Sources :

Commentaires - Politique