[Expansion de la fonction de Green pour les opérateurs de type divergence]
On considère la solution fondamentale de l'opérateur , sur un domaine borné régulier () avec les conditions de Dirichlet au bord, ici a est une fonction régulière et strictement positive sur . Dans cette Note, on donne une description précise de la fonction . On définit notamment , la partie continue de et on montre que la fonction de Robin correspondante est dans , sachant que en général.
We consider the fundamental solution of the operator on a bounded smooth domain (), associated to the Dirichlet boundary condition, where a is a positive smooth function on . In this short Note, we give a precise description of the function . In particular, we define in a unique way its continuous part and we prove that the corresponding Robin's function belongs to , although in general.
Accepté le :
Publié le :
Saïma Khenissy 1 ; Yomna Rébaï 2 ; Dong Ye 3
@article{CRMATH_2010__348_15-16_891_0, author = {Sa{\"\i}ma Khenissy and Yomna R\'eba{\"\i} and Dong Ye}, title = {Expansion of the {Green's} function for divergence form operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {891--896}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.06.024}, language = {en}, }
TY - JOUR AU - Saïma Khenissy AU - Yomna Rébaï AU - Dong Ye TI - Expansion of the Green's function for divergence form operators JO - Comptes Rendus. Mathématique PY - 2010 SP - 891 EP - 896 VL - 348 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2010.06.024 LA - en ID - CRMATH_2010__348_15-16_891_0 ER -
Saïma Khenissy; Yomna Rébaï; Dong Ye. Expansion of the Green's function for divergence form operators. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 891-896. doi : 10.1016/j.crma.2010.06.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.024/
[1] On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations, Volume 3 (1995), pp. 67-93
[2] Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations and , SIAM Rev., Volume 38 (1996) no. 2, pp. 191-238
[3] Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates, Commun. Pure Appl. Anal., Volume 4 (2005) no. 3, pp. 499-522
[4] Continuity of solutions of uniformly elliptic equations in , Manuscripta Math., Volume 77 (1992), pp. 415-433
[5] Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997) no. 1, pp. 245-265
[6] Elliptic Partial Differential Equations of Second Order, Springer, 2001
[7] The Green function for uniformly elliptic equations, Manuscripta Math., Volume 37 (1982) no. 3, pp. 303-342
[8] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Anal. Inst. Poincaré Anal. Nonlin., Volume 8 (1991), pp. 159-174
[9] On the elliptic equation , Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 12 (1985), pp. 191-224
[10] Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963), pp. 43-77
[11] On the fundamental solution of an elliptic equation in nondivergence form, 2008 | arXiv
[12] Asymptotic analysis for two-dimensional elliptic eigenvalue problem with exponentially dominated nonlinearities, Asymptot. Anal., Volume 3 (1990), pp. 173-188
[13] Study of the singular Yamabe problem in some bounded domain of , Adv. Nonlinear Stud., Volume 6 (2006), pp. 437-460
[14] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52
[15] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495
[16] Bubbling solutions for an anisotropic Emden–Fowler equation, Calc. Var. Partial Differential Equations, Volume 28 (2007), pp. 217-247
Cité par Sources :
Commentaires - Politique