[Le spectre continu de l'equation d'Euler 3D est un anneau]
On donne dans cette Note une description du spectre continu de l'équation d'Euler linearisée en dimension 3. Précisément, pour presque tout
In this Note we give a description of the continuous spectrum of the linearized Euler equations in three dimensions. Namely, for all but countably many times
Accepté le :
Publié le :
Roman Shvydkoy 1
@article{CRMATH_2010__348_15-16_897_0, author = {Roman Shvydkoy}, title = {Continuous spectrum of the {3D} {Euler} equation is a solid annulus}, journal = {Comptes Rendus. Math\'ematique}, pages = {897--900}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.009}, language = {en}, }
Roman Shvydkoy. Continuous spectrum of the 3D Euler equation is a solid annulus. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 897-900. doi : 10.1016/j.crma.2010.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.009/
[1] Three-dimensional instability of elliptical flow, Phys. Rev. Lett., Volume 57 (1986) no. 17, pp. 2160-2163
[2] On the spectral theory of elliptic differential operators. I, Math. Ann., Volume 142 (1960/1961), pp. 22-130
[3] Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., Volume 66 (1991) no. 17, pp. 2204-2206
[4] Linear stability in an ideal incompressible fluid, Comm. Math. Phys., Volume 233 (2003) no. 3, pp. 439-461
[5] Local stability conditions in fluid dynamics, Phys. Fluids A, Volume 3 (1991) no. 11, pp. 2644-2651
[6] The radius of the essential spectrum, Duke Math. J., Volume 37 (1970), pp. 473-478
[7] Subcritical transition to turbulence in plane channel flows, Phys. Rev. Lett., Volume 45 (1980), pp. 989-993
[8] Universal short-wave instability of two-dimensional eddies in an inviscid fluid, Phys. Rev. Lett., Volume 57 (1986), pp. 2157-2159
[9] A spectral theory for linear differential systems, J. Differential Equations, Volume 27 (1978) no. 3, pp. 320-358
[10] The essential spectrum of advective equations, Comm. Math. Phys., Volume 265 (2006) no. 2, pp. 507-545
[11] The essential spectrum of the linearized 2D Euler operator is a vertical band, Birmingham, AL, 2002 (Contemp. Math.), Volume vol. 327, Amer. Math. Soc., Providence, RI (2003), pp. 299-304
[12] Operator algebras and the Fredholm spectrum of advective equations of linear hydrodynamics, J. Funct. Anal., Volume 257 (2009), pp. 3309-3328
[13] The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, NJ, 1951
[14] Spectrum of small oscillations of an ideal fluid and Lyapunov exponents, J. Math. Pures Appl. (9), Volume 75 (1996) no. 6, pp. 531-557
- On the Rayleigh-Taylor instability in presence of a background shear, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 3, pp. 1195-1211 | DOI:10.1007/s00021-018-0362-9 | Zbl:1397.76045
- Linear stability of steady flows of Jeffreys type fluids, Recent trends in dynamical systems. Proceedings of the international conference, Munich, Germany, January 11–13, 2012, in honor of Jürgen Scheurle on the occasion of his 60th birthday, Basel: Springer, 2013, pp. 609-616 | DOI:10.1007/978-3-0348-0451-6_23 | Zbl:1317.76012
- Linear instability criteria for ideal fluid flows subject to two subclasses of perturbations, Journal of Mathematical Fluid Mechanics, Volume 14 (2012) no. 3, pp. 541-564 | DOI:10.1007/s00021-011-0081-y | Zbl:1254.76059
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier