Comptes Rendus
Geometry
Primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds
[Représentations primitivement stables des variétés hyperboliques géométriquement infinies du bretzel creux]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 907-910.

Nous démontrons qu'une représentation discrète, fidèle du groupe libre dans PSL(2,C) sans parabolique est primitivement stable.

In this Note we show that a discrete faithful representation of a free group in PSL(2,C) without parabolics is primitive stable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.015

Woojin Jeon 1 ; Inkang Kim 2

1 Department of Mathematics, Seoul National University, San 56-1, Sinlim-dong, Gwanak-ku, Seoul 151-747, Republic of Korea
2 School of Mathematics, KIAS, Heogiro 87, Dongdaemen-gu, Seoul 130-722, Republic of Korea
@article{CRMATH_2010__348_15-16_907_0,
     author = {Woojin Jeon and Inkang Kim},
     title = {Primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {907--910},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.015},
     language = {en},
}
TY  - JOUR
AU  - Woojin Jeon
AU  - Inkang Kim
TI  - Primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 907
EP  - 910
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.015
LA  - en
ID  - CRMATH_2010__348_15-16_907_0
ER  - 
%0 Journal Article
%A Woojin Jeon
%A Inkang Kim
%T Primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds
%J Comptes Rendus. Mathématique
%D 2010
%P 907-910
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.015
%G en
%F CRMATH_2010__348_15-16_907_0
Woojin Jeon; Inkang Kim. Primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 907-910. doi : 10.1016/j.crma.2010.07.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.015/

[1] I. Agol Tameness of hyperbolic 3-manifolds, 2004 (preprint) | arXiv

[2] B. Bowditch, Geometric model for hyperbolic manifolds, Southhampton, 2005, preprint.

[3] D. Calegari; D. Gabai Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc., Volume 19 (2006) no. 2, pp. 385-446

[4] R.D. Canary Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc., Volume 6 (1993) no. 1, pp. 1-35

[5] S. Das; M. Mj Addendum to ending laminations and Cannon–Thurston maps: Parabolics, 2010 (preprint) | arXiv

[6] W.J. Floyd Group completions and limit sets of Kleinian groups, Invent. Math., Volume 57 (1980), pp. 205-218

[7] W. Jeon; I. Kim On primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds, 2010 (preprint) | arXiv

[8] I. Kim Divergent sequences of function groups, Differential Geom. Appl., Volume 26 (2008) no. 6, pp. 645-655

[9] I. Kim; C. Lecuire; K. Ohshika Convergence of freely decomposable Kleinian groups, 2004 (preprint) | arXiv

[10] Y. Minsky On dynamics of Out(Fn) on PSL2(C) characters, 2009 (preprint) | arXiv

[11] M. Mj Cannon–Thurston maps for Kleinian groups, 2010 (preprint) | arXiv

[12] J.-P. Otal, Courants géodésiques et produits libres, Thèse d'Etat, Université de Paris-Sud, Orsay, 1988.

[13] J.R. Stallings, Whitehead graphs on handlebodies, 1996, preprint.

[14] J.H.C. Whitehead On certain sets of elements in a free group, Proc. London Math. Soc., Volume 41 (1936), pp. 48-56

[15] J.H.C. Whitehead On equivalent sets of elements in a free group, Ann. of Math., Volume 37 (1936), pp. 780-782

Cité par Sources :

Commentaires - Politique