[Fluide visqueux dans un domaine de faible épaisseur vérifiant la condition de glissement sur une frontière lègèrement rugueuse]
We consider a viscous fluid of small height ε on a periodic rough bottom
On considère un fluide visqueux de faible épaisseur ε sur un fond rugueux
Accepté le :
Publié le :
Juan Casado-Díaz 1 ; Manuel Luna-Laynez 1 ; Francisco Javier Suárez-Grau 1
@article{CRMATH_2010__348_17-18_967_0, author = {Juan Casado-D{\'\i}az and Manuel Luna-Laynez and Francisco Javier Su\'arez-Grau}, title = {A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {967--971}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.023}, language = {en}, }
TY - JOUR AU - Juan Casado-Díaz AU - Manuel Luna-Laynez AU - Francisco Javier Suárez-Grau TI - A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary JO - Comptes Rendus. Mathématique PY - 2010 SP - 967 EP - 971 VL - 348 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2010.07.023 LA - en ID - CRMATH_2010__348_17-18_967_0 ER -
%0 Journal Article %A Juan Casado-Díaz %A Manuel Luna-Laynez %A Francisco Javier Suárez-Grau %T A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary %J Comptes Rendus. Mathématique %D 2010 %P 967-971 %V 348 %N 17-18 %I Elsevier %R 10.1016/j.crma.2010.07.023 %G en %F CRMATH_2010__348_17-18_967_0
Juan Casado-Díaz; Manuel Luna-Laynez; Francisco Javier Suárez-Grau. A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 967-971. doi : 10.1016/j.crma.2010.07.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.023/
[1] Effect of rugosity on a flow governed by stationary Navier–Stokes equations, Quart. Appl. Math., Volume 59 (2001), pp. 769-785
[2] The Stokes equations with Fourier boundary conditions on a wall with asperities, Math. Models Meth. Appl. Sci., Volume 24 (2001), pp. 255-276
[3] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990), pp. 823-836
[4] Homogenization of the Stokes system in a thin film flow with rapidly varying thickness, RAIRO Model. Math. Anal. Numer., Volume 23 (1989), pp. 205-234
[5] Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., Volume 63 (2005), pp. 369-400
[6] Roughness-induced effect at main order on the Reynolds approximation, Multiscale Model. Simul., Volume 8 (2010), pp. 997-1017
[7] Boundary behavior of viscous fluids: Influence of wall roughness and friction-driven boundary conditions, Arch. Rational Mech. Anal., Volume 197 (2010), pp. 117-138
[8] On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries, J. Differential Equations, Volume 244 (2008), pp. 2890-2908
[9] Two-scale convergence for nonlinear Dirichlet problems in perforated domains, Proc. Roy. Soc. Edinburgh A, Volume 130 (2000), pp. 249-276
[10] Why viscous fluids adhere to rugose walls: A mathematical explanation, J. Differential Equations, Volume 189 (2003), pp. 526-537
[11] Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall, Math. Models Meth. Appl. Sci., Volume 20 (2010), pp. 121-156
[12] Periodic unfolding and homogenization, C. R. Acad. Sci. Paris Ser. I, Volume 335 (2002), pp. 99-104
[13] Couette flows over a rough boundary and drag reduction, Comm. Math. Phys., Volume 232 (2003), pp. 429-455
- Homogenization in 3D thin domains with oscillating boundaries of different orders, Nonlinear Analysis, Volume 251 (2025), p. 113667 | DOI:10.1016/j.na.2024.113667
- Roughness‐induced effects on the thermomicropolar fluid flow through a thin domain, Studies in Applied Mathematics, Volume 151 (2023) no. 2, p. 716 | DOI:10.1111/sapm.12611
- A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 56 (2022) no. 4, p. 1255 | DOI:10.1051/m2an/2022039
- Semi-Group Theory for the Stokes Operator with Navier-Type Boundary Conditions on L p -Spaces, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 2, p. 881 | DOI:10.1007/s00205-016-1048-1
- APPROXIMATE TRANSMISSION CONDITIONS FOR A POISSON PROBLEM AT MID-DIFFUSION, Mathematical Modelling and Analysis, Volume 20 (2015) no. 1, p. 53 | DOI:10.3846/13926292.2015.1000988
- Effective boundary condition for a quasi‐Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 95 (2015) no. 5, p. 527 | DOI:10.1002/zamm.201300160
- Effect of Roughness on the Flow of a Fluid Against Periodic and Nonperiodic Rough Boundaries, Differential and Difference Equations with Applications, Volume 47 (2013), p. 607 | DOI:10.1007/978-1-4614-7333-6_56
- Asymptotic Behavior of the Navier–Stokes System in a Thin Domain with Navier Condition on a Slightly Rough Boundary, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 3, p. 1641 | DOI:10.1137/120873479
- On the Navier boundary condition for viscous fluids in rough domains, SeMA Journal, Volume 58 (2012) no. 1, p. 5 | DOI:10.1007/bf03322603
- Asymptotic Behavior of a Viscous Fluid Near a Rough Boundary, BAIL 2010 - Boundary and Interior Layers, Computational and Asymptotic Methods, Volume 81 (2011), p. 57 | DOI:10.1007/978-3-642-19665-2_7
Cité par 10 documents. Sources : Crossref
Commentaires - Politique