[Sur la continuité des opérateurs intégraux de Fourier sur ]
Dans cette Note nous présentons des estimations globales pour les opérateurs intégraux de Fourier dans les espaces . Les questions d'intérêt sont les conditions des décroissance pour les amplitudes. Les résultats sont présentés sous des conditions différentes sur la fonction de phase et l'amplitude.
The aim of this Note is to present global boundedness results for Fourier integral operators in . The main question is what are the decay conditions on the amplitudes for the operators to be bounded on . Results under different sets of assumptions on phase functions and amplitudes are presented.
Accepté le :
Publié le :
Sandro Coriasco 1 ; Michael Ruzhansky 2
@article{CRMATH_2010__348_15-16_847_0, author = {Sandro Coriasco and Michael Ruzhansky}, title = {On the boundedness of {Fourier} integral operators on $ {L}^{p}({\mathbb{R}}^{n})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {847--851}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.025}, language = {en}, }
TY - JOUR AU - Sandro Coriasco AU - Michael Ruzhansky TI - On the boundedness of Fourier integral operators on $ {L}^{p}({\mathbb{R}}^{n})$ JO - Comptes Rendus. Mathématique PY - 2010 SP - 847 EP - 851 VL - 348 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2010.07.025 LA - en ID - CRMATH_2010__348_15-16_847_0 ER -
Sandro Coriasco; Michael Ruzhansky. On the boundedness of Fourier integral operators on $ {L}^{p}({\mathbb{R}}^{n})$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 847-851. doi : 10.1016/j.crma.2010.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.025/
[1] On some oscillatory integral transformations in , Japan. J. Math. (N.S.), Volume 4 (1978), pp. 299-361
[2] boundedness of Fourier integrals, Mem. Amer. Math. Soc., Volume 264 (1982)
[3] Estimations precisees pour des intégrales oscillantes, Comm. Partial Differential Equations, Volume 22 (1997), pp. 165-184
[4] On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, Volume 23 (1971), pp. 374-378
[5] On the -boundedness of pseudo-differential operators, Proc. Amer. Math. Soc., Volume 61 (1976), pp. 252-254
[6] Au-delà des opérateurs pseudo-différentiels, Astérisque, Volume 57 (1978)
[7] Boundedness of Fourier integral operators on spaces, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 6049-6071
[8] On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal., Volume 18 (1975), pp. 115-131
[9] Fourier integral operators in SG classes I: composition theorems and action on SG Sobolev spaces, Rend. Sem. Mat. Univ. Pol. Torino, Volume 57 (1999), pp. 249-302
[10] Degenerate elliptic pseudo-differential operators of principal type, Math. USSR Sbornik, Volume 11 (1970), pp. 539-585
[11] Fourier integral operators. I, Acta Math., Volume 127 (1971), pp. 79-183
[12] A calculus of Fourier integral operators on and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations, Volume 1 (1976), pp. 1-44
[13] On some estimates for the wave operator in and , J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980), pp. 331-354
[14] estimates for the wave equation, J. Funct. Anal., Volume 36 (1980), pp. 114-145
[15] Singularities of affine fibrations in the regularity theory of Fourier integral operators, Russian Math. Surveys, Volume 55 (2000), pp. 99-170
[16] Regularity Theory of Fourier Integral Operators with Complex Phases and Singularities of Affine Fibrations, CWI Tract, vol. 131, Math. Centrum, CWI, Amsterdam, 2001
[17] Global boundedness theorems for a class of Fourier integral operators, Comm. Partial Differential Equations, Volume 31 (2006), pp. 547-569
[18] A smoothing property of Schrödinger equations in the critical case, Math. Ann., Volume 335 (2006), pp. 645-673
[19] Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations, Oper. Theory Adv. Appl., Volume 164 (2006), pp. 65-78
[20] Weighted Sobolev estimates for a class of Fourier integral operators (Math. Nachr., in press) | arXiv
[21] Regularity properties of Fourier integral operators, Ann. of Math., Volume 134 (1991), pp. 231-251
[22] -boundedness of pseudo-differential operators satisfying Besov estimates I, J. Math. Soc. Japan, Volume 40 (1988), pp. 105-122
[23] The weak-type of Fourier integral operators of order , J. Aust. Math. Soc., Volume 76 (2004), pp. 1-21
Cité par Sources :
Commentaires - Politique