Comptes Rendus
Probability Theory
On Cramér's theorem for capacities
[Sur théorème de Cramér pour capacités]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1009-1013.

Dans cette Note, notre objet est d'obtenir la borne supérieure de Cramér pour les capacités induites par des espérances sous-linéaires.

In this Note, our aim is to obtain Cramér's upper bound for capacities induced by sublinear expectations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.033

Feng Hu 1

1 School of Mathematics, Shandong University, 250100 Jinan, China
@article{CRMATH_2010__348_17-18_1009_0,
     author = {Feng Hu},
     title = {On {Cram\'er's} theorem for capacities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1009--1013},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.033},
     language = {en},
}
TY  - JOUR
AU  - Feng Hu
TI  - On Cramér's theorem for capacities
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1009
EP  - 1013
VL  - 348
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.033
LA  - en
ID  - CRMATH_2010__348_17-18_1009_0
ER  - 
%0 Journal Article
%A Feng Hu
%T On Cramér's theorem for capacities
%J Comptes Rendus. Mathématique
%D 2010
%P 1009-1013
%V 348
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2010.07.033
%G en
%F CRMATH_2010__348_17-18_1009_0
Feng Hu. On Cramér's theorem for capacities. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1009-1013. doi : 10.1016/j.crma.2010.07.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.033/

[1] P. Artzner; F. Delbaen; J.M. Eber; D. Heath Coherent measures of risk, Mathematical Finance, Volume 9 (1999) no. 3, pp. 203-228

[2] A. Dembo; O. Zeitouni Large Deviations Techniques and Applications, Springer-Verlag, New York–Berlin–Heidelberg, 1998

[3] H. Föllmer; A. Schied Convex measures of risk and trading constraints, Finance and Stochastics, Volume 6 (2002) no. 4, pp. 429-447

[4] M. Frittelli; E. Rossaza Gianin Dynamic convex risk measures (G. Szegö, ed.), New Risk Measures for the 21st Century, John Wiley & Sons, 2004, pp. 227-248

[5] S. Peng G-Brownian motion and dynamic risk measure under volatility uncertainty, 19 Nov 2007 | arXiv

[6] S. Peng A new central limit theorem under sublinear expectations, 18 Mar 2008 | arXiv

[7] S. Peng Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52 (2009) no. 7, pp. 1391-1411

  • José M. Zapata Large Deviation Theory Without Probability Measures, Combining, Modelling and Analyzing Imprecision, Randomness and Dependence, Volume 1458 (2024), p. 554 | DOI:10.1007/978-3-031-65993-5_68
  • Xin Deng; Yang Ding; Yi Wu; Xuejun Wang On complete convergence for weighted sums of m -widely acceptable random variables under sub-linear expectations and its statistical applications, Stochastic Models (2024), p. 1 | DOI:10.1080/15326349.2024.2375201
  • Wei Liu; Yong Zhang Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation, Communications in Statistics - Theory and Methods, Volume 52 (2023) no. 16, p. 5727 | DOI:10.1080/03610926.2021.2018462
  • José M. Zapata Representation of weakly maxitive monetary risk measures and their rate functions, Journal of Mathematical Analysis and Applications, Volume 524 (2023) no. 1, p. 127072 | DOI:10.1016/j.jmaa.2023.127072
  • Abdoulaye Soumana Hima; Ibrahim Dakaou Large deviation principle for Reflected Stochastic Differential Equations driven by G-Brownian motion in non-convex domains, Statistics Probability Letters, Volume 193 (2023), p. 109707 | DOI:10.1016/j.spl.2022.109707
  • Daniel Lacker A non-exponential extension of Sanov’s theorem via convex duality, Advances in Applied Probability, Volume 52 (2020) no. 1, p. 61 | DOI:10.1017/apr.2019.52
  • Yuzhen Tan; Gaofeng Zong Large deviation principle for random variables under sublinear expectations on Rd, Journal of Mathematical Analysis and Applications, Volume 488 (2020) no. 2, p. 124110 | DOI:10.1016/j.jmaa.2020.124110
  • Feng Hu The modulus of continuity theorem for G-Brownian motion, Communications in Statistics - Theory and Methods, Volume 46 (2017) no. 7, p. 3586 | DOI:10.1080/03610926.2015.1066816
  • Zengjing Chen; Xinwei Feng Large deviation for negatively dependent random variables under sublinear expectation, Communications in Statistics - Theory and Methods, Volume 45 (2016) no. 2, p. 400 | DOI:10.1080/03610926.2015.1006067
  • Gaofeng Zong; Zengjing Chen; Yuting Lan Fubini-Like Theorem of Real-Valued Choquet Integrals for Set-Valued Mappings, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Volume 24 (2016) no. 03, p. 387 | DOI:10.1142/s0218488516500197
  • Xiaomin Cao; Xuejun Xie An Upper Bound of Large Deviations for Capacities, Mathematical Problems in Engineering, Volume 2014 (2014) no. 1 | DOI:10.1155/2014/516291
  • Feng Hu; ZengJing Chen; DeFei Zhang How big are the increments of G-Brownian motion?, Science China Mathematics, Volume 57 (2014) no. 8, p. 1687 | DOI:10.1007/s11425-014-4816-0
  • HANS FÖLLMER; THOMAS KNISPEL ENTROPIC RISK MEASURES: COHERENCE VS. CONVEXITY, MODEL AMBIGUITY AND ROBUST LARGE DEVIATIONS, Stochastics and Dynamics, Volume 11 (2011) no. 02n03, p. 333 | DOI:10.1142/s0219493711003334

Cité par 13 documents. Sources : Crossref

This work has been supported by the National Basic Program of China (973 Program) (No. 2007CB814901) and the National Natural Science Foundation of China (No. 10771119).

Commentaires - Politique