Comptes Rendus
Probability Theory
On Cramér's theorem for capacities
[Sur théorème de Cramér pour capacités]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1009-1013.

Dans cette Note, notre objet est d'obtenir la borne supérieure de Cramér pour les capacités induites par des espérances sous-linéaires.

In this Note, our aim is to obtain Cramér's upper bound for capacities induced by sublinear expectations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.033

Feng Hu 1

1 School of Mathematics, Shandong University, 250100 Jinan, China
@article{CRMATH_2010__348_17-18_1009_0,
     author = {Feng Hu},
     title = {On {Cram\'er's} theorem for capacities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1009--1013},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.033},
     language = {en},
}
TY  - JOUR
AU  - Feng Hu
TI  - On Cramér's theorem for capacities
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1009
EP  - 1013
VL  - 348
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.033
LA  - en
ID  - CRMATH_2010__348_17-18_1009_0
ER  - 
%0 Journal Article
%A Feng Hu
%T On Cramér's theorem for capacities
%J Comptes Rendus. Mathématique
%D 2010
%P 1009-1013
%V 348
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2010.07.033
%G en
%F CRMATH_2010__348_17-18_1009_0
Feng Hu. On Cramér's theorem for capacities. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1009-1013. doi : 10.1016/j.crma.2010.07.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.033/

[1] P. Artzner; F. Delbaen; J.M. Eber; D. Heath Coherent measures of risk, Mathematical Finance, Volume 9 (1999) no. 3, pp. 203-228

[2] A. Dembo; O. Zeitouni Large Deviations Techniques and Applications, Springer-Verlag, New York–Berlin–Heidelberg, 1998

[3] H. Föllmer; A. Schied Convex measures of risk and trading constraints, Finance and Stochastics, Volume 6 (2002) no. 4, pp. 429-447

[4] M. Frittelli; E. Rossaza Gianin Dynamic convex risk measures (G. Szegö, ed.), New Risk Measures for the 21st Century, John Wiley & Sons, 2004, pp. 227-248

[5] S. Peng G-Brownian motion and dynamic risk measure under volatility uncertainty, 19 Nov 2007 | arXiv

[6] S. Peng A new central limit theorem under sublinear expectations, 18 Mar 2008 | arXiv

[7] S. Peng Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52 (2009) no. 7, pp. 1391-1411

Cité par Sources :

This work has been supported by the National Basic Program of China (973 Program) (No. 2007CB814901) and the National Natural Science Foundation of China (No. 10771119).

Commentaires - Politique