[Intégrateurs symplectiques pour des systèmes Hamiltoniens hautement oscillants avec fréquences rapides variables]
Nous dérivons des intégrateurs symplectiques pour une classe de systèmes Hamiltoniens hautement oscillants. L'approche est basée sur un développement à deux échelles de la solution de l'équation de Hamilton–Jacobi associée à la dynamique originale. Cette Note présente une extension des techniques précédemment introduites dans Le Bris et Legoll (2007, 2010) [10,11] au cas où les fréquences rapides du système ne sont plus constantes, mais dépendent des variables lentes.
We derive symplectic integrators for a class of highly oscillatory Hamiltonian systems. Our approach is based upon a two-scale expansion of the solution to the Hamilton–Jacobi equation associated to the original dynamics. This Note presents an extension of the approach previously introduced in Le Bris and Legoll (2007, 2010) [10,11] to the case where the fast frequencies of the system, instead of being constant, explicitly depend on the slow degrees of freedom.
Accepté le :
Publié le :
Matthew Dobson 1 ; Claude Le Bris 1, 2 ; Frédéric Legoll 3, 2
@article{CRMATH_2010__348_17-18_1033_0, author = {Matthew Dobson and Claude Le Bris and Fr\'ed\'eric Legoll}, title = {Symplectic schemes for highly oscillatory {Hamiltonian} systems with varying fast frequencies}, journal = {Comptes Rendus. Math\'ematique}, pages = {1033--1038}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.08.005}, language = {en}, }
TY - JOUR AU - Matthew Dobson AU - Claude Le Bris AU - Frédéric Legoll TI - Symplectic schemes for highly oscillatory Hamiltonian systems with varying fast frequencies JO - Comptes Rendus. Mathématique PY - 2010 SP - 1033 EP - 1038 VL - 348 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2010.08.005 LA - en ID - CRMATH_2010__348_17-18_1033_0 ER -
%0 Journal Article %A Matthew Dobson %A Claude Le Bris %A Frédéric Legoll %T Symplectic schemes for highly oscillatory Hamiltonian systems with varying fast frequencies %J Comptes Rendus. Mathématique %D 2010 %P 1033-1038 %V 348 %N 17-18 %I Elsevier %R 10.1016/j.crma.2010.08.005 %G en %F CRMATH_2010__348_17-18_1033_0
Matthew Dobson; Claude Le Bris; Frédéric Legoll. Symplectic schemes for highly oscillatory Hamiltonian systems with varying fast frequencies. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1033-1038. doi : 10.1016/j.crma.2010.08.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.08.005/
[1] Homogenization of Hamiltonian systems with a strong constraining potential, Phys. D, Volume 102 (1997), pp. 57-77
[2] An averaging technique for highly-oscillatory Hamiltonian problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 4, pp. 2808-2837
[3] Numerical integrators for highly oscillatory Hamiltonian systems: a review (A. Mielke, ed.), Analysis, Modeling, Simulation of Multiscale Problems, Mathematics and Statistics Series, Springer, 2006, pp. 553-576
[4] Symplectic schemes for highly oscillatory Hamiltonian systems: the homogenization approach beyond the constant frequency case (preprint) | arXiv
[5] Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comp. Math., Volume 4 (1986), pp. 279-289
[6] Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput., Volume 20 (1998), pp. 930-963
[7] Error analysis of exponential integrators for oscillatory second-order differential equations, J. Phys. A, Volume 39 (2006), pp. 5495-5507
[8] Generalized Verlet algorithm for efficient molecular dynamics simulations with long range interaction, Mol. Sim., Volume 6 (1991) no. 1–3, pp. 121-142
[9] Geometric Numerical Integration, Springer, 2006
[10] Dérivation de schémas numériques symplectiques pour des systèmes Hamiltoniens hautement oscillants, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 277-282
[11] Integrators for highly oscillatory Hamiltonian systems: an homogenization approach, Discrete Contin. Dyn. Syst. Ser. B, Volume 13 (2010) no. 2, pp. 347-373
[12] Reversible multiple time scale molecular dynamics, J. Chem. Phys., Volume 97 (1992), pp. 1990-2001
Cité par Sources :
☆ This work was supported in part by the NSF Mathematical Sciences Postdoctoral Research Fellowship, by the INRIA under the grant “Action de Recherche Collaborative” HYBRID, and by the Agence Nationale de la Recherche, under grant ANR-09-BLAN-0216-01 (MEGAS).
Commentaires - Politique