Comptes Rendus
Numerical Analysis
Symplectic schemes for highly oscillatory Hamiltonian systems with varying fast frequencies
[Intégrateurs symplectiques pour des systèmes Hamiltoniens hautement oscillants avec fréquences rapides variables]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1033-1038.

Nous dérivons des intégrateurs symplectiques pour une classe de systèmes Hamiltoniens hautement oscillants. L'approche est basée sur un développement à deux échelles de la solution de l'équation de Hamilton–Jacobi associée à la dynamique originale. Cette Note présente une extension des techniques précédemment introduites dans Le Bris et Legoll (2007, 2010) [10,11] au cas où les fréquences rapides du système ne sont plus constantes, mais dépendent des variables lentes.

We derive symplectic integrators for a class of highly oscillatory Hamiltonian systems. Our approach is based upon a two-scale expansion of the solution to the Hamilton–Jacobi equation associated to the original dynamics. This Note presents an extension of the approach previously introduced in Le Bris and Legoll (2007, 2010) [10,11] to the case where the fast frequencies of the system, instead of being constant, explicitly depend on the slow degrees of freedom.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.08.005

Matthew Dobson 1 ; Claude Le Bris 1, 2 ; Frédéric Legoll 3, 2

1 CERMICS, École des Ponts ParisTech, 77455 Marne-La-Vallée cedex 2, France
2 INRIA Rocquencourt, MICMAC project, domaine de Voluceau, B.P. 105, 78153 Le Chesnay cedex, France
3 Institut Navier, LAMI, École des Ponts ParisTech, 77455 Marne-La-Vallée cedex 2, France
@article{CRMATH_2010__348_17-18_1033_0,
     author = {Matthew Dobson and Claude Le Bris and Fr\'ed\'eric Legoll},
     title = {Symplectic schemes for highly oscillatory {Hamiltonian} systems with varying fast frequencies},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1033--1038},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.08.005},
     language = {en},
}
TY  - JOUR
AU  - Matthew Dobson
AU  - Claude Le Bris
AU  - Frédéric Legoll
TI  - Symplectic schemes for highly oscillatory Hamiltonian systems with varying fast frequencies
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1033
EP  - 1038
VL  - 348
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2010.08.005
LA  - en
ID  - CRMATH_2010__348_17-18_1033_0
ER  - 
%0 Journal Article
%A Matthew Dobson
%A Claude Le Bris
%A Frédéric Legoll
%T Symplectic schemes for highly oscillatory Hamiltonian systems with varying fast frequencies
%J Comptes Rendus. Mathématique
%D 2010
%P 1033-1038
%V 348
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2010.08.005
%G en
%F CRMATH_2010__348_17-18_1033_0
Matthew Dobson; Claude Le Bris; Frédéric Legoll. Symplectic schemes for highly oscillatory Hamiltonian systems with varying fast frequencies. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1033-1038. doi : 10.1016/j.crma.2010.08.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.08.005/

[1] F. Bornemann; C. Schuette Homogenization of Hamiltonian systems with a strong constraining potential, Phys. D, Volume 102 (1997), pp. 57-77

[2] F. Castella; Ph. Chartier; E. Faou An averaging technique for highly-oscillatory Hamiltonian problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 4, pp. 2808-2837

[3] D. Cohen; T. Jahnke; K. Lorenz; Ch. Lubich Numerical integrators for highly oscillatory Hamiltonian systems: a review (A. Mielke, ed.), Analysis, Modeling, Simulation of Multiscale Problems, Mathematics and Statistics Series, Springer, 2006, pp. 553-576

[4] M. Dobson; C. Le Bris; F. Legoll Symplectic schemes for highly oscillatory Hamiltonian systems: the homogenization approach beyond the constant frequency case (preprint) | arXiv

[5] K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comp. Math., Volume 4 (1986), pp. 279-289

[6] B. Garcia-Archilla; J. Sanz-Serna; R. Skeel Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput., Volume 20 (1998), pp. 930-963

[7] V. Grimm; M. Hochbruck Error analysis of exponential integrators for oscillatory second-order differential equations, J. Phys. A, Volume 39 (2006), pp. 5495-5507

[8] H. Grubmüller; H. Heller; A. Windemuth; K. Schulten Generalized Verlet algorithm for efficient molecular dynamics simulations with long range interaction, Mol. Sim., Volume 6 (1991) no. 1–3, pp. 121-142

[9] E. Hairer; C. Lubich; G. Wanner Geometric Numerical Integration, Springer, 2006

[10] C. Le Bris; F. Legoll Dérivation de schémas numériques symplectiques pour des systèmes Hamiltoniens hautement oscillants, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 277-282

[11] C. Le Bris; F. Legoll Integrators for highly oscillatory Hamiltonian systems: an homogenization approach, Discrete Contin. Dyn. Syst. Ser. B, Volume 13 (2010) no. 2, pp. 347-373

[12] M.E. Tuckermann; B.J. Berne; G.J. Martyna Reversible multiple time scale molecular dynamics, J. Chem. Phys., Volume 97 (1992), pp. 1990-2001

Cité par Sources :

This work was supported in part by the NSF Mathematical Sciences Postdoctoral Research Fellowship, by the INRIA under the grant “Action de Recherche Collaborative” HYBRID, and by the Agence Nationale de la Recherche, under grant ANR-09-BLAN-0216-01 (MEGAS).

Commentaires - Politique