Comptes Rendus
Mathematical Problems in Mechanics
Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension
[Minimiseurs de l'énergie explicits d'une barre incompressible, élastique, mais fragile, soumise à une extension uniaxiale]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1045-1048.

Une barre rectangulaire faite d'un matériau incompressible, homogène, isotropique, hyper-élastique, mais fragile, est soumis à une extension uniaxiale. Nous prouvons que les minimiseurs de l'énergie correspondent, selon le coefficient de ténacité du matériau, soit à une déformation homogène, soit à une famille de déformations pour lesquelles une fracture horizontale casse le matériau en deux parties rectangulaires, chacune étant un mouvement rigide de la pièce non déformée.

A rectangular bar made of a hyperelastic, but brittle, incompressible homogeneous and isotropic material is subject to uniaxial extension. We prove that the energy minimizers are, depending on the toughness coefficient of the material, either the homogeneous deformation, or the family of deformations for which a horizontal fracture breaks the material in two rectangular pieces, each of which is a rigid motion of the undeformed piece.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.005

Carlos Mora-Corral 1

1 BCAM – Basque Center for Applied Mathematics, Bizkaia Technology Park, building 500, 48160 Derio, Basque Country, Spain
@article{CRMATH_2010__348_17-18_1045_0,
     author = {Carlos Mora-Corral},
     title = {Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1045--1048},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.09.005},
     language = {en},
}
TY  - JOUR
AU  - Carlos Mora-Corral
TI  - Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1045
EP  - 1048
VL  - 348
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2010.09.005
LA  - en
ID  - CRMATH_2010__348_17-18_1045_0
ER  - 
%0 Journal Article
%A Carlos Mora-Corral
%T Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension
%J Comptes Rendus. Mathématique
%D 2010
%P 1045-1048
%V 348
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2010.09.005
%G en
%F CRMATH_2010__348_17-18_1045_0
Carlos Mora-Corral. Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1045-1048. doi : 10.1016/j.crma.2010.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.005/

[1] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000

[2] L. Ambrosio; V. Caselles; S. Masnou; Jean-Michel Morel Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc., Volume 3 (2001), pp. 39-92

[3] J.M. Ball Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1976/77), pp. 337-403

[4] A. Chambolle; A. Giacomini; M. Ponsiglione Piecewise rigidity, J. Funct. Anal., Volume 244 (2007), pp. 134-153

[5] N. Chaudhuri; S. Müller Rigidity estimate for two incompatible wells, Calc. Var. Partial Differential Equations, Volume 19 (2004), pp. 379-390

[6] C. De Lellis; L. Székelyhidi Simple proof of two-well rigidity, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 367-370

[7] H. Federer Geometric Measure Theory, Springer, New York, 1969

[8] J. Sivaloganathan; S.J. Spector On the global stability of two-dimensional, incompressible, elastic bars in uniaxial extension, Proc. R. Soc. A, Volume 466 (2010), pp. 1167-1176

  • Asaf Shachar Embedding surfaces inside small domains with minimal distortion, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 4, p. 43 (Id/No 147) | DOI:10.1007/s00526-021-02014-5 | Zbl:1472.53053
  • Manuel Friedrich A derivation of linearized Griffith energies from nonlinear models, Archive for Rational Mechanics and Analysis, Volume 225 (2017) no. 1, pp. 425-467 | DOI:10.1007/s00205-017-1108-1 | Zbl:1367.35169
  • Carlos Mora-Corral; Magdalena Strugaru Necking in two-dimensional incompressible polyconvex materials: theoretical framework and numerical simulations, The Quarterly Journal of Mechanics and Applied Mathematics, Volume 70 (2017) no. 3, p. 249 | DOI:10.1093/qjmam/hbx006
  • Manuel Friedrich; Bernd Schmidt On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime, Networks and Heterogeneous Media, Volume 10 (2015) no. 2, pp. 321-342 | DOI:10.3934/nhm.2015.10.321 | Zbl:1332.74044
  • Jonathan Bevan On double-covering stationary points of a constrained Dirichlet energy, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 31 (2014) no. 2, pp. 391-411 | DOI:10.1016/j.anihpc.2013.04.001 | Zbl:1311.49009
  • Jeyabal Sivaloganathan; Scott J. Spector On the stability of incompressible elastic cylinders in uniaxial extension, Journal of Elasticity, Volume 105 (2011) no. 1-2, pp. 313-330 | DOI:10.1007/s10659-011-9330-9 | Zbl:1263.74011
  • Jeyabal Sivaloganathan; Scott J. Spector On the Stability of Incompressible Elastic Cylinders in Uniaxial Extension, Methods and Tastes in Modern Continuum Mechanics (2011), p. 733 | DOI:10.1007/978-94-007-1884-5_42

Cité par 7 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: