[Sur une loi de branchement des représentations unitaires et une conjecture de Kobayashi]
In this Note we consider the equivalence of different properties of the restriction of an irreducible unitary representation of a real reductive group to a closed reductive subgroup. As a corollary, we prove a weak form of a conjecture of Kobayashi.
Dans cette Note, nous considérons l'équivalence de différentes propriétés de la restriction d'une représentation unitaire irréductible d'un groupe de Lie réel réductif á un sous-groupe réductif fermé. Comme corollaire, nous prouvons une forme faible d'une conjecture de Kobayashi.
Accepté le :
Publié le :
Fuhai Zhu 1 ; Ke Liang 1
@article{CRMATH_2010__348_17-18_959_0,
author = {Fuhai Zhu and Ke Liang},
title = {On a branching law of unitary representations and a conjecture of {Kobayashi}},
journal = {Comptes Rendus. Math\'ematique},
pages = {959--962},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {17-18},
doi = {10.1016/j.crma.2010.09.006},
language = {en},
}
Fuhai Zhu; Ke Liang. On a branching law of unitary representations and a conjecture of Kobayashi. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 959-962. doi: 10.1016/j.crma.2010.09.006
[1] M. Duflo, J. Vargas, Proper maps and multiplicities, preprint.
[2] The restriction of to reductive subgroups, Proc. Japan Acad., Volume 69 (1993), pp. 262-267
[3] Discrete decomposability of the restriction of with respect to reductive subgroups and its applications, Invent. Math., Volume 117 (1994), pp. 181-205
[4] Discrete decomposability of the restriction of , Part III: Restriction of Harish–Chandra modules and associated varieties, Invent. Math., Volume 131 (1998), pp. 229-256
[5] Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal., Volume 152 (1998), pp. 100-135
[6] Discrete decomposable restrictions of unitary representations of reductive Lie groups–examples and conjectures, Okayama–Kyoto, 1997 (Adv. Stud. Pure Math.), Volume vol. 26, Math. Soc. Japan, Tokyo (2000), pp. 99-127
[7] Branching problems of unitary representations, Proceedings of the International Congress of Mathematicians, vol. II, Higher Ed. Press, Beijing, 2002, pp. 615-627
[8] Restrictions of unitary representations of real reductive groups, Lie Theory: Unitary Representations and Compactifications of Symmetric Spaces, Progr. Math., vol. 29, Birkhäuser Boston, Boston, MA, 2005, pp. 139-207
[9] On the tensor product of a finite and an infinite dimensional representation, J. Funct. Anal., Volume 20 (1975), pp. 257-285
Cité par Sources :
Commentaires - Politique
