[Équations fonctionnelles pour les fonctions zêta de schémas sur ]
Pour un schéma X dont les points -rationnels sont comptés par un polynôme , la fonction zêta sur est définie par . Posons . Dans cette Note nous montrons que si X est un schéma projectif lisse, alors sa fonction zêta sur satisfait l'équation fonctionnelle . Nous montrons aussi que la fonction zêta sur d'un schéma en groupes réductif déployé G de rang r avec N racines positives satisfait l'équation fonctionnelle .
For a scheme X whose -rational points are counted by a polynomial , the -zeta function is defined as . Define . In this paper we show that if X is a smooth projective scheme, then its -zeta function satisfies the functional equation . We further show that the -zeta function of a split reductive group scheme G of rank r with N positive roots satisfies the functional equation .
Accepté le :
Publié le :
Oliver Lorscheid 1
@article{CRMATH_2010__348_21-22_1143_0, author = {Oliver Lorscheid}, title = {Functional equations for zeta functions of $ {\mathbb{F}}_{1}$-schemes}, journal = {Comptes Rendus. Math\'ematique}, pages = {1143--1146}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.010}, language = {en}, }
Oliver Lorscheid. Functional equations for zeta functions of $ {\mathbb{F}}_{1}$-schemes. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1143-1146. doi : 10.1016/j.crma.2010.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.010/
[1] On the notion of geometry over , 2008 (preprint) | arXiv
[2] Remarks on zeta functions and K-theory over , Japan Academy. Proceedings. Series A. Mathematical Sciences, Volume 82 (2006)
[3] Motivic zeta functions of motives, Pure and Applied Mathematics Quarterly, Volume 5 (2009) no. 1, pp. 507-570
[4] Zeta functions over , Japan Academy. Proceedings. Series A. Mathematical Sciences, Volume 81 (2005) no. 10, pp. 180-184
[5] J. López Peña, O. Lorscheid, Torified varieties and their geometries over , Online first at Mathematische Zeitschrift (2009).
[6] J. López Peña, O. Lorscheid, Mapping -land: an overview over geometries over the field with one element, in: Proceeding of the Conferences on , 2009, , in press. | arXiv
[7] Algebraic groups over the field with one element, 2009 | arXiv
[8] Moduli of representations of quivers. Trends in representation theory of algebras and related topics, EMS Series of Congress Reports (2008), pp. 589-637
[9] Les variétés sur le corps à un élément, Moscow Mathematical Journal, Volume 4 (2004), pp. 217-244
Cité par Sources :
Commentaires - Politique