[Approximation d'un problème biharmonique par élément fini P1]
Nous proposons une approximation de la solution du problème bi-harmonique dans
We propose an approximation of the solution of the biharmonic problem in
Accepté le :
Publié le :
Robert Eymard 1 ; Raphaèle Herbin 2
@article{CRMATH_2010__348_23-24_1283_0, author = {Robert Eymard and Rapha\`ele Herbin}, title = {Approximation of the biharmonic problem using piecewise linear finite elements}, journal = {Comptes Rendus. Math\'ematique}, pages = {1283--1286}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.11.002}, language = {en}, }
TY - JOUR AU - Robert Eymard AU - Raphaèle Herbin TI - Approximation of the biharmonic problem using piecewise linear finite elements JO - Comptes Rendus. Mathématique PY - 2010 SP - 1283 EP - 1286 VL - 348 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2010.11.002 LA - en ID - CRMATH_2010__348_23-24_1283_0 ER -
Robert Eymard; Raphaèle Herbin. Approximation of the biharmonic problem using piecewise linear finite elements. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1283-1286. doi : 10.1016/j.crma.2010.11.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.002/
[1] A compact difference scheme for the biharmonic equation in planar irregular domains, SIAM J. Numer. Anal., Volume 47 (2009) no. 4, pp. 3087-3108
[2] A fast direct solver for the biharmonic problem in a rectangular grid, SIAM J. Sci. Comput., Volume 31 (2008) no. 1, pp. 303-333
[3] Mortar finite volume method with Adini element for biharmonic problem, J. Comput. Math., Volume 22 (2004) no. 3, pp. 475-488
[4] C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., Volume 22/23 (2005), pp. 83-118
[5] Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991
[6] A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow, Adv. Comput. Math., Volume 29 (2008) no. 2, pp. 113-133
[7] The finite element method (P.G. Ciarlet; J.-L. Lions, eds.), Handbook of Numerical Analysis, vol. III, Part I, North-Holland, Amsterdam, 1991
[8] Mathematical Analysis of Thin Plate Models, Mathématiques & Applications [Mathematics & Applications], vol. 24, Springer-Verlag, Berlin, 1996
[9] R. Eymard, T. Gallouët, Herbin, Finite volume schemes for the biharmonic problem on general meshes, 2010, submitted for publication.
[10] Discontinuous Galerkin methods for the biharmonic problem, IMA J. Numer. Anal., Volume 29 (2009) no. 3, pp. 573-594
[11] Mixed discontinuous Galerkin finite element method for the biharmonic equation, J. Sci. Comput., Volume 37 (2008) no. 2, pp. 139-161
[12] hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation, J. Sci. Comput., Volume 30 (2007) no. 3, pp. 465-491
[13] hp-version interior penalty DGFEMs for the biharmonic equation, Comput. Methods Appl. Mech. Engrg., Volume 196 (2007) no. 13–16, pp. 1851-1863
[14] A mixed finite volume element method based on rectangular mesh for biharmonic equations, J. Comput. Appl. Math., Volume 172 (2004) no. 1, pp. 117-130
Cité par Sources :
Commentaires - Politique