[Sur le problème de courbure scalaire prescrite sur : Le cas de degré zéro]
Dans cette Note nous considérons le problème dʼexistence de métriques conformes avec courbure scalaire prescrite, sur la sphère standard , . Nous donnons de nouveaux résultats dʼexistence et de multiplicité reposant sur un nouveau type de formule dʼEuler–Hopf. Nos arguments ont également lʼavantage dʼétendre des résultats bien connus de Y. Li (1995) [10].
In this Note, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere , . We give new existence and multiplicity results based on a new Euler–Hopf formula type. Our argument also has the advantage of extending the well known results due to Y. Li (1995) [10].
Accepté le :
Publié le :
Randa Ben Mahmoud 1 ; Hichem Chtioui 2 ; Afef Rigane 1
@article{CRMATH_2012__350_11-12_583_0, author = {Randa Ben Mahmoud and Hichem Chtioui and Afef Rigane}, title = {On the prescribed scalar curvature problem on $ {S}^{n}$: {The} degree zero case}, journal = {Comptes Rendus. Math\'ematique}, pages = {583--586}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.012}, language = {en}, }
TY - JOUR AU - Randa Ben Mahmoud AU - Hichem Chtioui AU - Afef Rigane TI - On the prescribed scalar curvature problem on $ {S}^{n}$: The degree zero case JO - Comptes Rendus. Mathématique PY - 2012 SP - 583 EP - 586 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.06.012 LA - en ID - CRMATH_2012__350_11-12_583_0 ER -
%0 Journal Article %A Randa Ben Mahmoud %A Hichem Chtioui %A Afef Rigane %T On the prescribed scalar curvature problem on $ {S}^{n}$: The degree zero case %J Comptes Rendus. Mathématique %D 2012 %P 583-586 %V 350 %N 11-12 %I Elsevier %R 10.1016/j.crma.2012.06.012 %G en %F CRMATH_2012__350_11-12_583_0
Randa Ben Mahmoud; Hichem Chtioui; Afef Rigane. On the prescribed scalar curvature problem on $ {S}^{n}$: The degree zero case. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 583-586. doi : 10.1016/j.crma.2012.06.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.012/
[1] Homoclinics: Poincaré–Melnikov type results via variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 15 (1998), pp. 233-252
[2] Perturbation of , the scalar curvature problem in and related topics, J. Funct. Anal., Volume 165 (1999), pp. 117-149
[3] Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math., vol. 182, Longman Sci. Tech., Harlow, 1989
[4] An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimensions, Duke Math. J., Volume 81 (1996), pp. 323-466
[5] Existence results for the prescribed scalar curvature on , Ann. Inst. Fourier, Volume 61 (2011), pp. 971-986
[6] Prescribing the scalar curvature problem on higher-dimensional manifolds, Discrete Contin. Dyn. Syst. A, Volume 32 (2012) no. 5, pp. 1857-1879
[7] R. Ben Mahmoud, H. Chtioui, A. Rigane, On the prescribed scalar curvature on : The degree zero case, in preparation.
[8] A perturbation result in prescribing scalar curvature on , Duke Math. J., Volume 64 (1991), pp. 27-69
[9] Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. Math., Volume 101 (1975), pp. 317-331
[10] Prescribing scalar curvature on and related topics, Part I, J. Diff. Eq., Volume 120 (1995), pp. 319-410
[11] Prescribing scalar curvature on and related topics, Part II: Existence and compactness, Comm. Pure Appl. Math., Volume 49 (1996), pp. 541-579
Cité par Sources :
Commentaires - Politique