[Estimations dʼarrondi pour des problèmes de faisabilité coniques du second ordre]
Nous présentons une analyse de la méthode des points intérieurs pour résoudre les problèmes de faisabilité des systèmes coniques du second ordre. Une caractéristique principale de cet algorithme est que les opérations arithmétiques sont effectuées en précision finie. Des estimations du nombre des opérations arithmétiques et de la précision requise sont obtenues.
We present the analysis of an interior-point method to decide feasibility problems of second-order conic systems. A main feature of this algorithm is that arithmetic operations are performed with finite precision. Bounds for both the number of arithmetic operations and the finest precision required are exhibited.
Accepté le :
Publié le :
Felipe Cucker 1 ; Javier Peña 2 ; Vera Roshchina 1
@article{CRMATH_2012__350_11-12_639_0, author = {Felipe Cucker and Javier Pe\~na and Vera Roshchina}, title = {Round-off estimates for second-order conic feasibility problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {639--641}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.013}, language = {en}, }
TY - JOUR AU - Felipe Cucker AU - Javier Peña AU - Vera Roshchina TI - Round-off estimates for second-order conic feasibility problems JO - Comptes Rendus. Mathématique PY - 2012 SP - 639 EP - 641 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.06.013 LA - en ID - CRMATH_2012__350_11-12_639_0 ER -
Felipe Cucker; Javier Peña; Vera Roshchina. Round-off estimates for second-order conic feasibility problems. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 639-641. doi : 10.1016/j.crma.2012.06.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.013/
[1] Second-order cone programming, Math. Program., Volume 95 (2003), pp. 3-51
[2] A stabilization of the simplex method, Numer. Math., Volume 16 (1971), pp. 414-434
[3] Solving linear programs with finite precision: II. Algorithms, J. Complexity, Volume 22 (2006), pp. 305-335
[4] Techniques for automatic tolerance control in linear programming, Comm. ACM, Volume 9 (1966), pp. 802-803
[5] A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine, SIAM J. Optim., Volume 12 (2002), pp. 522-554
[6] Solving second-order conic systems with finite-precision (preprint. Available at) | arXiv
[7] The simplex method is not always well behaved, Linear Algebra Appl., Volume 109 (1988), pp. 41-57
[8] Linear programming, complexity theory and elementary functional analysis, Math. Program., Volume 70 (1995), pp. 279-351
[9] A Mathematical View of Interior-Point Methods in Convex Optimization, SIAM, 2000
[10] A characterization of stability in linear programming, Oper. Res., Volume 25 (1977), pp. 435-447
[11] Applications of second-order cone programming, Linear Algebra Appl., Volume 284 (1998), pp. 193-228
[12] Error control in the simplex-technique, BIT, Volume 7 (1967), pp. 216-225
[13] A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming, Optim. Methods Softw., Volume 11 (1999), pp. 141-182
[14] On the complexity of linear programming under finite precision arithmetic, Math. Program., Volume 80 (1998), pp. 91-123
[15] Error in the solution of linear programming problems (L.R. Ball, ed.), Error in Digital Computation, John Wiley & Sons, 1965, pp. 271-284
Cité par Sources :
Commentaires - Politique