[Un nouveau schéma préservant lʼasymptotique avec le principe du maximum pour le modèle
Dans cette Note, nous montrons quʼun nouveau schéma introduit dans Buet et al. (2011) [5] pour le modèle à deux moments non linéaire
In this Note, we show that a recent scheme introduced by Buet et al. (2011) [5] for the nonlinear two moments
Accepté le :
Publié le :
Christophe Buet 1 ; Bruno Després 2 ; Emmanuel Franck 2, 1
@article{CRMATH_2012__350_11-12_633_0, author = {Christophe Buet and Bruno Despr\'es and Emmanuel Franck}, title = {An asymptotic preserving scheme with the maximum principle for the $ {M}_{1}$ model on distorded meshes}, journal = {Comptes Rendus. Math\'ematique}, pages = {633--638}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.07.002}, language = {en}, }
TY - JOUR AU - Christophe Buet AU - Bruno Després AU - Emmanuel Franck TI - An asymptotic preserving scheme with the maximum principle for the $ {M}_{1}$ model on distorded meshes JO - Comptes Rendus. Mathématique PY - 2012 SP - 633 EP - 638 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.07.002 LA - en ID - CRMATH_2012__350_11-12_633_0 ER -
%0 Journal Article %A Christophe Buet %A Bruno Després %A Emmanuel Franck %T An asymptotic preserving scheme with the maximum principle for the $ {M}_{1}$ model on distorded meshes %J Comptes Rendus. Mathématique %D 2012 %P 633-638 %V 350 %N 11-12 %I Elsevier %R 10.1016/j.crma.2012.07.002 %G en %F CRMATH_2012__350_11-12_633_0
Christophe Buet; Bruno Després; Emmanuel Franck. An asymptotic preserving scheme with the maximum principle for the $ {M}_{1}$ model on distorded meshes. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 633-638. doi : 10.1016/j.crma.2012.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.07.002/
[1] Mathematical Models and Numerical Methods for Radiative Transfer, Panoramas et Synthèses, vol. 28, 2009
[2] An HLLC scheme to solve the
[3] A free streaming contact preserving scheme for the M1 model, Adv. Appl. Math. Mech., Volume 3 (2010), pp. 259-285
[4] Grey radiative hydrodynamics; hierarchy of models and numerical approximation, Mathematical Models and Numerical Methods for Radiative Transfer, Panor. Synthèses, vol. 28, SMF, Paris, 2009
[5] C. Buet, B. Després, E. Franck, Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes, in: Proceedings FVCA6, 2011.
[6] Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes Numer. Math. (2012) | DOI
[7] A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., Volume 228 (2009) no. 14, pp. 5160-5518
[8] An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 337-342
[9] Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., Volume 126 (1996), pp. 449-467
[10] Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transfer, Volume 31 (1984) no. 2, pp. 149-160
[11] A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., Volume 29 (2007) no. 4, pp. 1781-1824
[12] The convergence rate of approximate solutions for nonlinear scalar conservation laws, SIAM J. Numer. Anal., Volume 29 (1991), pp. 1505-1519
- An asymptotic preserving scheme for the
model on polygonal and conical meshes, Calcolo, Volume 61 (2024) no. 2 | DOI:10.1007/s10092-024-00574-4 - Stabilized mixed finite element method for the M1 radiation model, Computer Methods in Applied Mechanics and Engineering, Volume 335 (2018), p. 69 | DOI:10.1016/j.cma.2018.01.046
- An admissibility and asymptotic preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction, Computer Methods in Applied Mechanics and Engineering, Volume 317 (2017), p. 836 | DOI:10.1016/j.cma.2017.01.012
- Finite Volume Scheme with Local High Order Discretization of the Hydrostatic Equilibrium for the Euler Equations with External Forces, Journal of Scientific Computing, Volume 69 (2016) no. 1, p. 314 | DOI:10.1007/s10915-016-0199-4
- Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport, Journal of Scientific Computing, Volume 62 (2015) no. 2, p. 371 | DOI:10.1007/s10915-014-9859-4
- Modified Finite Volume Nodal Scheme for Euler Equations with Gravity and Friction, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Volume 77 (2014), p. 285 | DOI:10.1007/978-3-319-05684-5_27
- The Special Case of 2-Velocity Kinetic Models, Computing Qualitatively Correct Approximations of Balance Laws, Volume 2 (2013), p. 137 | DOI:10.1007/978-88-470-2892-0_8
Cité par 7 documents. Sources : Crossref
Commentaires - Politique