[Log-concavité des actions toriques hamiltoniennes de complexité un]
Soit
Let
Accepté le :
Publié le :
Yunhyung Cho 1 ; Min Kyu Kim 2
@article{CRMATH_2012__350_17-18_845_0, author = {Yunhyung Cho and Min Kyu Kim}, title = {Log-concavity of complexity one {Hamiltonian} torus actions}, journal = {Comptes Rendus. Math\'ematique}, pages = {845--848}, publisher = {Elsevier}, volume = {350}, number = {17-18}, year = {2012}, doi = {10.1016/j.crma.2012.07.004}, language = {en}, }
Yunhyung Cho; Min Kyu Kim. Log-concavity of complexity one Hamiltonian torus actions. Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 845-848. doi : 10.1016/j.crma.2012.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.07.004/
[1] The log-concavity conjecture on semifree symplectic
[2] On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., Volume 69 (1982), pp. 259-268
[3] Logarithmic convexity of push-forward measures, Invent. Math., Volume 123 (1996), pp. 315-322
[4] Convexity property of the moment mapping, Invent. Math., Volume 67 (1982), pp. 491-513
[5] Example of a non-log-concave Duistermaat–Heckman measure, Math. Res. Lett., Volume 3 (1996), pp. 537-540
[6] Periodic Hamiltonian flows on four dimensional manifolds, Mem. Amer. Math. Soc., Volume 141 (1999) no. 672
[7] The log-concavity conjecture for the Duistermaat–Heckman measure revisited, Int. Math. Res. Not. (2008) no. 10 (Art. ID rnn027, 19 pp)
[8] Symplectic surgery and the
[9] Why would multiplicities be log-concave?, Marseille, 2000 (Progress in Mathematics), Volume vol. 213, Birkhäuser Boston, Boston, MA (2003), pp. 329-347
[10] Log-concavity of multiplicities with application to characters of
Cité par Sources :
Commentaires - Politique