Comptes Rendus
Logique
Amas de lacets markoviens
Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 643-646.

On étudie les amas définis par les ensembles poissonniens de lacets markoviens.

We study the clusters defined by Poisson processes of Markov loops.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.07.008

Yves Le Jan 1, 2

1 Université Paris Sud, département de mathématiques, 91405 Orsay cedex, France
2 Institut Universitaire de France, France
@article{CRMATH_2012__350_13-14_643_0,
     author = {Yves Le Jan},
     title = {Amas de lacets markoviens},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {643--646},
     publisher = {Elsevier},
     volume = {350},
     number = {13-14},
     year = {2012},
     doi = {10.1016/j.crma.2012.07.008},
     language = {fr},
}
TY  - JOUR
AU  - Yves Le Jan
TI  - Amas de lacets markoviens
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 643
EP  - 646
VL  - 350
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2012.07.008
LA  - fr
ID  - CRMATH_2012__350_13-14_643_0
ER  - 
%0 Journal Article
%A Yves Le Jan
%T Amas de lacets markoviens
%J Comptes Rendus. Mathématique
%D 2012
%P 643-646
%V 350
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2012.07.008
%G fr
%F CRMATH_2012__350_13-14_643_0
Yves Le Jan. Amas de lacets markoviens. Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 643-646. doi : 10.1016/j.crma.2012.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.07.008/

[1] J. Bertoin; J. Pitman Two coalescents derived from the ranges of stable subordinators, EJPECP, Volume 5 (2000) no. 7, pp. 1-17

[2] G. Lawler; W. Werner The Brownian loop soup, PTRF, Volume 128 (2004), pp. 565-588

[3] Y. Le Jan Markov Paths, Loops and Fields, LNM, vol. 2026, Springer, 2011

[4] S. Sheffield, W. Werner, Conformal loop ensembles: the Markovian characterization and the loop–soup construction, 2010, , Ann. Maths., in press. | arXiv

[5] K. Symanzik Euclidean quantum field theory, Scuola Internazionale di Fisica “Enrico Fermi”, XLV Corso, Academic Press, 1969, pp. 152-223

  • Yves Le Jan Primitive Loops, Loop Clusters, and Loop Percolation, Random Walks and Physical Fields, Volume 106 (2024), p. 49 | DOI:10.1007/978-3-031-57923-3_5
  • Hugo Duminil-Copin; Subhajit Goswami; Pierre-François Rodriguez; Franco Severo Equality of critical parameters for percolation of Gaussian free field level sets, Duke Mathematical Journal, Volume 172 (2023) no. 5 | DOI:10.1215/00127094-2022-0017
  • Elisabetta Candellero; Augusto Teixeira Percolation and isoperimetry on roughly transitive graphs, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 4 | DOI:10.1214/17-aihp857
  • Yinshan Chang; Artëm Sapozhnikov Phase transition in loop percolation, Probability Theory and Related Fields, Volume 164 (2016) no. 3-4, p. 979 | DOI:10.1007/s00440-015-0624-x
  • Yinshan Chang Loop cluster on discrete circles, Electronic Journal of Probability, Volume 20 (2015) no. none | DOI:10.1214/ejp.v20-3176
  • Yves Le Jan; Sophie Lemaire Markovian loop clusters on graphs, Illinois Journal of Mathematics, Volume 57 (2013) no. 2 | DOI:10.1215/ijm/1408453593

Cité par 6 documents. Sources : Crossref

Commentaires - Politique