Comptes Rendus
Optimal Control
Stochastic maximum principle for optimal control of SPDEs
[Sur le principe du maximum stochastique pour le contrôle optimal des EDP stochastiques]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 683-688.

Dans cette Note, nous présentons un principe du maximum stochastique pour le contrôle optimal des EDP stochastiques dans le cas général (quand le domaine du contrôle nʼest pas forcément convexe et que le coefficient de diffusion peut contenir la variable de contrôle).

In this Note, we give the stochastic maximum principle for optimal control of stochastic PDEs in the general case (when the control domain need not be convex and the diffusion coefficient can contain a control variable).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.07.009

Marco Fuhrman 1 ; Ying Hu 2 ; Gianmario Tessitore 3

1 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
2 IRMAR, Université Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France
3 Dipartimento di Matematica, Università di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
@article{CRMATH_2012__350_13-14_683_0,
     author = {Marco Fuhrman and Ying Hu and Gianmario Tessitore},
     title = {Stochastic maximum principle for optimal control of {SPDEs}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {683--688},
     publisher = {Elsevier},
     volume = {350},
     number = {13-14},
     year = {2012},
     doi = {10.1016/j.crma.2012.07.009},
     language = {en},
}
TY  - JOUR
AU  - Marco Fuhrman
AU  - Ying Hu
AU  - Gianmario Tessitore
TI  - Stochastic maximum principle for optimal control of SPDEs
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 683
EP  - 688
VL  - 350
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2012.07.009
LA  - en
ID  - CRMATH_2012__350_13-14_683_0
ER  - 
%0 Journal Article
%A Marco Fuhrman
%A Ying Hu
%A Gianmario Tessitore
%T Stochastic maximum principle for optimal control of SPDEs
%J Comptes Rendus. Mathématique
%D 2012
%P 683-688
%V 350
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2012.07.009
%G en
%F CRMATH_2012__350_13-14_683_0
Marco Fuhrman; Ying Hu; Gianmario Tessitore. Stochastic maximum principle for optimal control of SPDEs. Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 683-688. doi : 10.1016/j.crma.2012.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.07.009/

[1] A. Bensoussan Stochastic maximum principle for distributed parameter systems, J. Franklin Inst., Volume 315 (1983) no. 5–6, pp. 387-406

[2] Y. Hu; S. Peng Adapted solution of a backward semilinear stochastic evolution equation, Stochastic Anal. Appl., Volume 9 (1991) no. 4, pp. 445-459

[3] Q. Lu; X. Zhang General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions, 2012 (preprint) | arXiv

[4] A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser Verlag, Basel, 1995

[5] S. Peng A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., Volume 28 (1990) no. 4, pp. 966-979

[6] S.J. Tang; X.J. Li Maximum principle for optimal control of distributed parameter stochastic systems with random jumps, Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., vol. 152, 1994, pp. 867-890

  • Binjie Li; Xiaoping Xie Temporal Semi-discretizations of a Backward Semilinear Stochastic Evolution Equation, Applied Mathematics Optimization, Volume 88 (2023) no. 2 | DOI:10.1007/s00245-023-10014-4
  • Qin Zhou; Binjie Li Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation, Science China Mathematics, Volume 66 (2023) no. 9, p. 2133 | DOI:10.1007/s11425-021-2027-7
  • Meijiao Wang; Qiuhong Shi; Maoning Tang; Qingxin Meng Stochastic differential equations in infinite dimensional Hilbert space and its optimal control problem with Lévy processes, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2427 | DOI:10.3934/math.2022137
  • Ying Hu Stochastic Maximum Principle, Encyclopedia of Systems and Control (2021), p. 2186 | DOI:10.1007/978-3-030-44184-5_229
  • Luca Scarpa Analysis and Optimal Velocity Control of a Stochastic Convective Cahn-Hilliard Equation, Journal of Nonlinear Science, Volume 31 (2021) no. 2 | DOI:10.1007/s00332-021-09702-8
  • Wilhelm Stannat; Lukas Wessels Peng's Maximum Principle for Stochastic Partial Differential Equations, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 5, p. 3552 | DOI:10.1137/20m1368057
  • Carlo Orrieri; Elisabetta Rocca; Luca Scarpa Optimal control of stochastic phase-field models related to tumor growth, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 104 | DOI:10.1051/cocv/2020022
  • Ying Hu Stochastic Maximum Principle, Encyclopedia of Systems and Control (2020), p. 1 | DOI:10.1007/978-1-4471-5102-9_229-2
  • Giuseppina Guatteri; Gianmario Tessitore Ergodic BSDEs with Multiplicative and Degenerate Noise, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 4, p. 2050 | DOI:10.1137/19m1292552
  • K. Kadlec; B. Maslowski Ergodic Control for Lévy-Driven Linear Stochastic Equations in Hilbert Spaces, Applied Mathematics Optimization, Volume 79 (2019) no. 3, p. 547 | DOI:10.1007/s00245-017-9447-8
  • Zhipeng Li; Qianqian Cai; Zhigang Ren; Huanshui Zhang; Minyue Fu; Zongze Wu Optimal control of a class of semi‐linear stochastic evolution equations with applications, IET Control Theory Applications, Volume 13 (2019) no. 4, p. 602 | DOI:10.1049/iet-cta.2018.6171
  • Giuseppina Guatteri; Federica Masiero; Carlo Orrieri Stochastic maximum principle for SPDEs with delay, Stochastic Processes and their Applications, Volume 127 (2017) no. 7, p. 2396 | DOI:10.1016/j.spa.2016.11.007
  • Marco Fuhrman; Carlo Orrieri Stochastic Maximum Principle for Optimal Control of a Class of Nonlinear SPDEs with Dissipative Drift, SIAM Journal on Control and Optimization, Volume 54 (2016) no. 1, p. 341 | DOI:10.1137/15m1012888
  • Carlo Orrieri A stochastic maximum principle with dissipativity conditions, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 11, p. 5499 | DOI:10.3934/dcds.2015.35.5499
  • Bohdan Maslowski; Petr Veverka Sufficient Stochastic Maximum Principle for Discounted Control Problem, Applied Mathematics Optimization, Volume 70 (2014) no. 2, p. 225 | DOI:10.1007/s00245-014-9241-9
  • Qing-xin Meng; Mao-ning Tang A variational formula for controlled backward stochastic partial differential equations and some application, Applied Mathematics-A Journal of Chinese Universities, Volume 29 (2014) no. 3, p. 295 | DOI:10.1007/s11766-014-3156-8
  • Ying Hu Stochastic Maximum Principle, Encyclopedia of Systems and Control (2014), p. 1 | DOI:10.1007/978-1-4471-5102-9_229-1
  • Ruimin Xu; Tingting Wu; Guangchen Wang Mean‐Field Backward Stochastic Evolution Equations in Hilbert Spaces and Optimal Control for BSPDEs, Mathematical Problems in Engineering, Volume 2014 (2014) no. 1 | DOI:10.1155/2014/718948
  • AbdulRahman Al-Hussein Necessary Conditions for Optimality for Stochastic Evolution Equations, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/469390
  • Marco Fuhrman; Ying Hu; Gianmario Tessitore Stochastic Maximum Principle for Optimal Control of SPDEs, Applied Mathematics Optimization, Volume 68 (2013) no. 2, p. 181 | DOI:10.1007/s00245-013-9203-7
  • Kai Du; Shanjian Tang; Qi Zhang Wm,p-solution (p⩾2) of linear degenerate backward stochastic partial differential equations in the whole space, Journal of Differential Equations, Volume 254 (2013) no. 7, p. 2877 | DOI:10.1016/j.jde.2013.01.013
  • Kai Du; Qingxin Meng A Maximum Principle for Optimal Control of Stochastic Evolution Equations, SIAM Journal on Control and Optimization, Volume 51 (2013) no. 6, p. 4343 | DOI:10.1137/120882433
  • Kai Du; Qingxin Meng Stochastic maximum principle for infinite dimensional control systems, arXiv (2012) | DOI:10.48550/arxiv.1208.0529 | arXiv:1208.0529
  • Kai Du; Qingxin Meng A Maximum Principle for Optimal Control of Stochastic Evolution Equations, arXiv (2012) | DOI:10.48550/arxiv.1206.5495 | arXiv:1206.5495

Cité par 24 documents. Sources : Crossref, NASA ADS

Supported by Marie Curie ITN Call: FP7-PEOPLE-2007-1-1-ITN, No. 213841-2: Deterministic and Stochastic Controlled Systems and Applications.

Commentaires - Politique