[Sur le principe du maximum stochastique pour le contrôle optimal des EDP stochastiques]
Dans cette Note, nous présentons un principe du maximum stochastique pour le contrôle optimal des EDP stochastiques dans le cas général (quand le domaine du contrôle nʼest pas forcément convexe et que le coefficient de diffusion peut contenir la variable de contrôle).
In this Note, we give the stochastic maximum principle for optimal control of stochastic PDEs in the general case (when the control domain need not be convex and the diffusion coefficient can contain a control variable).
Accepté le :
Publié le :
Marco Fuhrman 1 ; Ying Hu 2 ; Gianmario Tessitore 3
@article{CRMATH_2012__350_13-14_683_0, author = {Marco Fuhrman and Ying Hu and Gianmario Tessitore}, title = {Stochastic maximum principle for optimal control of {SPDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {350}, number = {13-14}, year = {2012}, doi = {10.1016/j.crma.2012.07.009}, language = {en}, }
TY - JOUR AU - Marco Fuhrman AU - Ying Hu AU - Gianmario Tessitore TI - Stochastic maximum principle for optimal control of SPDEs JO - Comptes Rendus. Mathématique PY - 2012 SP - 683 EP - 688 VL - 350 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2012.07.009 LA - en ID - CRMATH_2012__350_13-14_683_0 ER -
Marco Fuhrman; Ying Hu; Gianmario Tessitore. Stochastic maximum principle for optimal control of SPDEs. Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 683-688. doi : 10.1016/j.crma.2012.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.07.009/
[1] Stochastic maximum principle for distributed parameter systems, J. Franklin Inst., Volume 315 (1983) no. 5–6, pp. 387-406
[2] Adapted solution of a backward semilinear stochastic evolution equation, Stochastic Anal. Appl., Volume 9 (1991) no. 4, pp. 445-459
[3] General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions, 2012 (preprint) | arXiv
[4] Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser Verlag, Basel, 1995
[5] A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., Volume 28 (1990) no. 4, pp. 966-979
[6] Maximum principle for optimal control of distributed parameter stochastic systems with random jumps, Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., vol. 152, 1994, pp. 867-890
Cité par Sources :
☆ Supported by Marie Curie ITN Call: FP7-PEOPLE-2007-1-1-ITN, No. 213841-2: Deterministic and Stochastic Controlled Systems and Applications.
Commentaires - Politique