[Sur les solutions des équations matricielles
Dans cette note on étudie les solutions des équations généralisées de Sylvester
This note studies the solutions of generalized Sylvester equations
Accepté le :
Publié le :
Yongxin Yuan 1 ; Jiashang Jiang 1
@article{CRMATH_2012__350_19-20_903_0, author = {Yongxin Yuan and Jiashang Jiang}, title = {On solutions of the matrix equations $ KX-EXF=BY$ and $ MX{F}^{2}+DXF+KX=BY$}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--906}, publisher = {Elsevier}, volume = {350}, number = {19-20}, year = {2012}, doi = {10.1016/j.crma.2012.10.011}, language = {en}, }
TY - JOUR AU - Yongxin Yuan AU - Jiashang Jiang TI - On solutions of the matrix equations $ KX-EXF=BY$ and $ MX{F}^{2}+DXF+KX=BY$ JO - Comptes Rendus. Mathématique PY - 2012 SP - 903 EP - 906 VL - 350 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2012.10.011 LA - en ID - CRMATH_2012__350_19-20_903_0 ER -
Yongxin Yuan; Jiashang Jiang. On solutions of the matrix equations $ KX-EXF=BY$ and $ MX{F}^{2}+DXF+KX=BY$. Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 903-906. doi : 10.1016/j.crma.2012.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.011/
[1] Generalized Inverse: Theory and Applications, Wiley, New York, 1974
[2] Numerically robust pole assignment for second-order systems, Internat. J. Control, Volume 64 (1996), pp. 1113-1127
[3] Efficient iterative method for solving the second-order Sylvester matrix equation
[4] Iterative least squares solutions of coupled Sylvester matrix equations, Systems Control Lett., Volume 54 (2005), pp. 95-107
[5] Solution to matrix equation
[6] Solution to matrix equation
[7] On the solution to Sylvester matrix equation
[8] Two parametric approaches for eigenstructure assignment in second-order linear systems, J. Control Theory Appl., Volume 1 (2003), pp. 59-64
[9] Eigenstructure assignment design for proportional-integral observers: continuous-time case, IEE Proc. Control Theory Appl., Volume 148 (2001), pp. 263-267
[10] Solution to the second-order Sylvester matrix equation
[11] Robust and well-conditioned eigenstructure assignment via Sylvesterʼs equation, Optimal Control Appl. Methods, Volume 4 (1983), pp. 205-212
[12] Eigenstructure assignment using inverse eigenvalue methods, J. Guid. Contr. Dynam., Volume 18 (1995), pp. 625-627
[13] Solution of the equation
[14] Eigenstructure assignment algorithm for mechanical second-order systems, J. Guid. Contr. Dynam., Volume 22 (1999), pp. 729-731
[15] Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM J. Matrix Anal. Appl., Volume 38 (2006), pp. 26-39
[16] F. Rincon, Feedback stabilization of second-order models, PhD dissertation, Northern Illinois University, De Kalb, Illinois, USA, 1992.
[17] A new solution to the generalized Sylvester matrix equation
- Convergence properties of BCR method for generalized Sylvester matrix equation over generalized reflexive and anti-reflexive matrices, Linear and Multilinear Algebra, Volume 66 (2018) no. 10, p. 1975 | DOI:10.1080/03081087.2017.1382441
- Lanczos version of BCR algorithm for solving the generalised second‐order Sylvester matrix equation, IET Control Theory Applications, Volume 11 (2017) no. 2, p. 273 | DOI:10.1049/iet-cta.2016.0658
- Convergence of HS version of BCR algorithm to solve the generalized Sylvester matrix equation over generalized reflexive matrices, Journal of the Franklin Institute, Volume 354 (2017) no. 5, p. 2340 | DOI:10.1016/j.jfranklin.2017.01.008
Cité par 3 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier