[Sur les solutions des équations matricielles et ]
Dans cette note on étudie les solutions des équations généralisées de Sylvester et , on donne des expressions explicites des solutions de ces équations en utilisant des transformations matricielles et le polynôme minimal de la matrice F.
This note studies the solutions of generalized Sylvester equations and , and obtains explicit solutions of the equations by using some matrix transformations and the minimal polynomial of the matrix F.
Accepté le :
Publié le :
Yongxin Yuan 1 ; Jiashang Jiang 1
@article{CRMATH_2012__350_19-20_903_0, author = {Yongxin Yuan and Jiashang Jiang}, title = {On solutions of the matrix equations $ KX-EXF=BY$ and $ MX{F}^{2}+DXF+KX=BY$}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--906}, publisher = {Elsevier}, volume = {350}, number = {19-20}, year = {2012}, doi = {10.1016/j.crma.2012.10.011}, language = {en}, }
TY - JOUR AU - Yongxin Yuan AU - Jiashang Jiang TI - On solutions of the matrix equations $ KX-EXF=BY$ and $ MX{F}^{2}+DXF+KX=BY$ JO - Comptes Rendus. Mathématique PY - 2012 SP - 903 EP - 906 VL - 350 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2012.10.011 LA - en ID - CRMATH_2012__350_19-20_903_0 ER -
Yongxin Yuan; Jiashang Jiang. On solutions of the matrix equations $ KX-EXF=BY$ and $ MX{F}^{2}+DXF+KX=BY$. Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 903-906. doi : 10.1016/j.crma.2012.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.011/
[1] Generalized Inverse: Theory and Applications, Wiley, New York, 1974
[2] Numerically robust pole assignment for second-order systems, Internat. J. Control, Volume 64 (1996), pp. 1113-1127
[3] Efficient iterative method for solving the second-order Sylvester matrix equation , IET Control Theory Appl., Volume 3 (2009), pp. 1401-1409
[4] Iterative least squares solutions of coupled Sylvester matrix equations, Systems Control Lett., Volume 54 (2005), pp. 95-107
[5] Solution to matrix equation and eigenstructure assignment for descriptor systems, Automatica, Volume 28 (1992), pp. 639-643
[6] Solution to matrix equation and their application to eigenstructure assignment in linear systems, IEEE Trans. Aurora. Control, Volume 38 (1993), pp. 276-280
[7] On the solution to Sylvester matrix equation , IEEE Trans. Aurora. Control, Volume 41 (1996), pp. 612-614
[8] Two parametric approaches for eigenstructure assignment in second-order linear systems, J. Control Theory Appl., Volume 1 (2003), pp. 59-64
[9] Eigenstructure assignment design for proportional-integral observers: continuous-time case, IEE Proc. Control Theory Appl., Volume 148 (2001), pp. 263-267
[10] Solution to the second-order Sylvester matrix equation , IEEE Trans. Automat. Control, Volume 51 (2006), pp. 805-809
[11] Robust and well-conditioned eigenstructure assignment via Sylvesterʼs equation, Optimal Control Appl. Methods, Volume 4 (1983), pp. 205-212
[12] Eigenstructure assignment using inverse eigenvalue methods, J. Guid. Contr. Dynam., Volume 18 (1995), pp. 625-627
[13] Solution of the equation by inversion of an or matrix, SIAM J. Appl. Math., Volume 16 (1968), pp. 1020-1023
[14] Eigenstructure assignment algorithm for mechanical second-order systems, J. Guid. Contr. Dynam., Volume 22 (1999), pp. 729-731
[15] Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM J. Matrix Anal. Appl., Volume 38 (2006), pp. 26-39
[16] F. Rincon, Feedback stabilization of second-order models, PhD dissertation, Northern Illinois University, De Kalb, Illinois, USA, 1992.
[17] A new solution to the generalized Sylvester matrix equation , Systems Control Lett., Volume 55 (2006), pp. 193-198
Cité par Sources :
Commentaires - Politique